Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophiles carbonyls

The reduction of carbonyl compounds by reaction with hydride reagents (H -) and the Grignard addition by reaction with organomagnesium halides (R - +MgBr) are examples of nucleophilic carbonyl addition reactions. What analogous product do you think might result from reaction of cyanide ion with a ketone ... [Pg.651]

Judging from the following electrostatic potential maps, which kind of carbonyl compound has the more electrophilic carbonyl carbon atom, a ketone or an acid chloride Which has the more nucleophilic carbonyl oxygen atom Explain. [Pg.694]

Nucleophile/ Carbonyl compound H2O HOMe RSH RNH2 R2NH NH2OH HCN HSO3-... [Pg.10]

The finding that thiamine, and even simple thiazolium ring derivatives, can perform many reactions in the absence of the host apoenzyme has allowed detailed analyses of its chemistry [33, 34]. In 1958 Breslow first proposed a mechanism for thiamine catalysis to this day, this mechanism remains as the generally accepted model [35]. NMR deuterium exchange experiments were enlisted to show that the thiazolium C2-proton of thiamine was exchangeable, suggesting that a carbanion zwitterion could be formed at that center. This nucleophilic carbanion was proposed to interact with sites in the substrates. The thiazolium thus acts as an electron sink to stabilize a carbonyl carbanion generated by deprotonation of an aldehydic carbon or decarboxylation of an a-keto acid. The nucleophilic carbonyl equivalent could then react with other electro-... [Pg.17]

The lactone concept is not restricted to the simple model biaryl synthesis presented here. It has been successfully expanded to a broad series of structurally diverse biaryl substrates (e.g., lactones with additional stereocenters and functional groups, configurationally stable lactones, seven-membered lactones, and again configurationally unstable biaryl hydroxy aldehydes ), to different activation modes in the ring-opening step (e.g., use of metallated nucleophiles, carbonyl activation by Lewis acids, (Ti -complexation, etc.), and for various strategies of stereoselection (e.g., external vs. internal asymmetric induction). ... [Pg.187]

Many such activated acyl derivatives have been developed, and the field has been reviewed [7-9]. The most commonly used irreversible acyl donors are various types of vinyl esters. During the acylation of the enzyme, vinyl alcohols are liberated, which rapidly tautomerize to non-nucleophilic carbonyl compounds (Scheme 4.5). The acyl-enzyme then reacts with the racemic nucleophile (e.g., an alcohol or amine). Many vinyl esters and isopropenyl acetate are commercially available, and others can be made from vinyl and isopropenyl acetate by Lewis acid- or palladium-catalyzed reactions with acids [10-12] or from transition metal-catalyzed additions to acetylenes [13-15]. If ethoxyacetylene is used in such reactions, R1 in the resulting acyl donor will be OEt (Scheme 4.5), and hence the end product from the acyl donor leaving group will be the innocuous ethyl acetate [16]. Other frequently used acylation agents that act as more or less irreversible acyl donors are the easily prepared 2,2,2-trifluoro- and 2,2,2-trichloro-ethyl esters [17-23]. Less frequently used are oxime esters and cyanomethyl ester [7]. S-ethyl thioesters such as the thiooctanoate has also been used, and here the ethanethiol formed is allowed to evaporate to displace the equilibrium [24, 25]. Some anhydrides can also serve as irreversible acyl donors. [Pg.80]

Carbon-13 shifts of some 2-substituted 1,3-dithianes as protected carbonyl derivatives and nucleophilic carbonyl equivalents are collected in Table 4.63 [413], Methyl group increments for shift predictions according to eq. (4.1) are available, also taking contributions of the twist in addition to the chair conformation into account [413]. [Pg.275]

The use of masked acyl anion equivalents in a synthetic protocol requires additional steps to unmask the carbonyl unit. Sometimes the deprotection procedures are incompatible with sensitive compounds thus, a direct nucleophilic acylation protocol is desirable. While C-nucleophilic carbonyl groups do not... [Pg.114]

The dilithio derivative of 1,4-bisphenylsufonylbutane 61 was formed prior to the introduction of homochiral acylsilane 56 into the reaction mixture. The nucleophilic carbonyl addition/Brook rearrangement/elimination sequence delivered bis (fi)-vinyl silyl ether 64 in high yield and with very high selectivity through the putative intermediates 62 and 63. This short and effective synthesis of 55, this time made as the major isomer, was then completed as described above for 54. [Pg.355]

The next phase of the synthesis was installation of the dimethylamino-oxazoline ring system. This was constructed from the oxazolidinone precursor 19. Oxazolidinone formation occurred when 25 was reacted with thionyl chloride. The more nucleophilic carbonyl of 19 was then O-alkylated with the Meerwein reagent to give an iminium ion that readily participated in a nucleophilic addition/elimination reaction with dime-thylamine to give 26. The final step of the synthesis was O-deacetylation of 26 with sodium methoxide to provide (—)-allosamizoline hydrochloride in 98% yield after acidification. [Pg.243]

Products with mass equal to the sum of the reagent masses also form, to different extents, in the reactions of 02 with ketones, namely acetone, CF3COCH3 and (CF3)2C0264. These adducts were tentatively assigned the structure of the bound tetrahedral adduct of nucleophilic carbonyl addition. While this reaction is the only one observed with acetone, it competes with H+ abstraction in the case of CF3COCH3 to form the stabilized enolate [CH2=C (CT)CF3] and with ET in the case of (CF3)2CO (electron affinity is ca 33.7 kcal moF1). In this latter case it was concluded that reaction of (CF3)2CO with Of occurs exclusively via ET and that the adduct forms in a secondary process via reaction of the primary product, the radical anion of (CF3)2CO with 302 present in the flow from the preparation of 02 (see Scheme 39). [Pg.243]

In all of the reactions that have been presented until this one, a carbonyl carbon has always reacted as an electrophile. An acyl anion, however, has a nucleophilic carbonyl carbon. Thus, the use of a nucleophile obtained by deprotonation of a dithiane provides an example of the formal reversal of the normal polarity of a functional group. Such polarity reversal is termed umpolimg, using the German word for reversed polarity. [Pg.892]

Sequential nucleophilic and electrophilic alkylations of 1,3-dicarbonyl compounds with a trimethylenemethane zwitterion equivalent lead to [3 + 2]-annulation. The nucleophilic carbonyl alkylation step has been carried out via an indium-mediated allylation in water (Equation (30)).200 Indium-mediated allylation of a-chlorocarbonyl compounds with allyl bromides in aqueous media gives the corresponding homoallylic chlorohydrins, which can be transformed to allyloxiranes (Equation (31)).201 Allylation of the G3 position of the cephem nucleus has been accomplished by indium-mediated allylation reaction in aqueous media (Equation (32)).202... [Pg.676]

An interesting reaction of the 1,2-diazooxide 31 was recently discovered in the gas phase (17), i.e. the intramolecular interaction of the nucleophilic carbonyl oxygen atom with the electrophilic diazo group and formation of the benz-1,2,3-oxadiazole 32. At 40 C the equilibrium mixture consists of 10-20% Ji and 80-90%... [Pg.10]

The mechanism of intramolecular aldol reactions is similar to that of inter-molecular reactions. The only difference is that both the nucleophilic carbonyl anion donor and the electrophilic carbonyl acceptor are now in the same molecule. One complication, however, is that intramolecular aldol reactions might lead to a mixture of products, depending on which eiiolate ion is formed. For example, 2,5-hexanedione might yield either the five-membered-ring product 3-methyl-2-cyclopentenone or the three-membered-ring product (2-methyl-cyclopropenyl)ethanone (Figure 23.4). In practice, though, only the cycio-pentenone is formed. [Pg.887]

We are in a strange, complex chemical environment here, but in it we recognize familiar kinds of compounds—hemiacetals, esters, anhydrides, carboxylic acids—and familiar kinds of reactions—nucleophilic carbonyl addition, hydride transfer, nucleophilic acyl substitution. [Pg.1175]


See other pages where Nucleophiles carbonyls is mentioned: [Pg.92]    [Pg.763]    [Pg.887]    [Pg.1309]    [Pg.311]    [Pg.1336]    [Pg.125]    [Pg.126]    [Pg.241]    [Pg.226]    [Pg.719]    [Pg.354]    [Pg.217]    [Pg.79]    [Pg.223]    [Pg.92]    [Pg.286]    [Pg.1109]    [Pg.1255]    [Pg.1396]    [Pg.51]    [Pg.153]    [Pg.2522]    [Pg.763]    [Pg.445]    [Pg.1206]    [Pg.1207]    [Pg.1257]   
See also in sourсe #XX -- [ Pg.1258 , Pg.1259 ]




SEARCH



Nucleophilic carbonylation

© 2024 chempedia.info