Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary electrophoresis effecting

Tran, A. D., Park, S., Lisi, P. J., Huynh, O. T., Ryall, R. R., and Lane, P. A., Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis. Effects of pH, buffer type and organic additives,. Ckromatogr., 542, 459, 1991. [Pg.418]

JL Beckers, FM Everaerts, MT Ackermans. Determination of absolute mobilities, pK values, and separation numbers by capillary electrophoresis. Effective mobility as a parameter for screening. J. Chromatogr. 537 407-428 (1991). [Pg.81]

Karim MR, Janson JC, Takagi T. Size-dependent separation of proteins in the presence of sodium dodecyl sulfate and dextran in capillary electrophoresis effect of molecular weight of dextran. Electrophoresis 1994 15 1531-4. [Pg.104]

J.T. Hautala, S.K. Wiedmer and M.-L. Riekkola, Anionic liposomes in capillary electrophoresis Effect of calcium on l-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine/phosphatidylserine-coating in silica capillaries. Ana/. Bioanal. Chem., 378, 1769-1776, 2004. [Pg.972]

The heating effect is the limiting factor for all electrophoretic separations. When heat is dissipated rapidly, as in capillary electrophoresis, rapid, high resolution separations are possible. For electrophoretic separations the higher the separating driving force, ie, the electric field strength, the better the resolution. This means that if a way to separate faster can be found, it should also be a more effective separation. This is the opposite of most other separation techniques. [Pg.179]

Capillary Electrophoresis. Capillaries were first appHed as a support medium for electrophoresis in the early 1980s (44,45). The glass capillaries used are typically 20 to 200 p.m in diameter (46), may be filled with buffer or gel, and are frequendy coated on the inside. Capillaries are used because of the high surface-to-volume ratio which allows high voltages without heating effects. The only limitations associated with capillaries are limits of detection and clearance of sample components. [Pg.183]

Limits of detection become a problem in capillary electrophoresis because the amounts of analyte that can be loaded into a capillary are extremely small. In a 20 p.m capillary, for example, there is 0.03 P-L/cm capillary length. This is 1/100 to 1/1000 of the volume typically loaded onto polyacrylamide or agarose gels. For trace analysis, a very small number of molecules may actually exist in the capillary after loading. To detect these small amounts of components, some on-line detectors have been developed which use conductivity, laser Doppler effects, or narrowly focused lasers (qv) to detect either absorbance or duorescence (47,48). The conductivity detector claims detection limits down to lO molecules. The laser absorbance detector has been used to measure some of the components in a single human cell (see Trace AND RESIDUE ANALYSIS). [Pg.183]

Chiral additives have been shown to be very effective for chiral separations by capillary electrophoresis (CE) [4, 5]. Indeed, it may be argued that there has been considerably more research activity in chiral separations by CE than by EC methods since the introduction of the former technique. Chiral additives in CE have several advantages, some of which are highlighted in Table 11-2. [Pg.288]

Williams, B. A. and Vigh, G., Effect of the initial potential ramp on the accuracy of electrophoretic mobilities in capillary electrophoresis, Anal. Chem., 67, 3079, 1995. [Pg.418]

Satow, T., Machida, A., Funakushi, K., and Palmieri, R., Effects of the sample matrix on the separation of peptides by high performance capillary electrophoresis, HRC CC, 14, 276, 1991. [Pg.424]

Guttman, A., Cooke, N., and Star, C. M., Capillary electrophoresis separation of oligosaccharides. I. Effect of operational variables, Electrophoresis, 15,1518, 1994. [Pg.426]

A number of developments have increased the importance of capillary electrophoretic methods relative to pumped column methods in analysis. Interactions of analytes with the capillary wall are better understood, inspiring the development of means to minimize wall effects. Capillary electrophoresis (CE) has been standardized to the point of being useful as a routine technique. Incremental improvements in column coating techniques, buffer preparation, and injection techniques, combined with substantive advances in miniaturization and detection have potentiated rugged operation and high capacity massive parallelism in analysis. [Pg.427]

This book is organized into five sections (1) Theory, (2) Columns, Instrumentation, and Methods, (3) Life Science Applications, (4) Multidimensional Separations Using Capillary Electrophoresis, and (5) Industrial Applications. The first section covers theoretical topics including a theory overview chapter (Chapter 2), which deals with peak capacity, resolution, sampling, peak overlap, and other issues that have evolved the present level of understanding of multidimensional separation science. Two issues, however, are presented in more detail, and these are the effects of correlation on peak capacity (Chapter 3) and the use of sophisticated Fourier analysis methods for component estimation (Chapter 4). Chapter 11 also discusses a new approach to evaluating correlation and peak capacity. [Pg.5]

Schure (1999) has studied the effect of multidimensional dilution for column-based separations that incorporate chromatography, capillary electrophoresis (CE), and FFF. In all of these cases, the dilution factors are multiplicative this gives the direct result that the limit of detection for MDC is... [Pg.27]

Fan et al. [106] developed a high performance capillary electrophoresis method for the analysis of primaquine and its trifluoroacetyl derivative. The method is based on the mode of capillary-zone electrophoresis in the Bio-Rad HPE-100 capillary electrophoresis system effects of some factors in the electrophoretic conditions on the separation of primaquine and trifluoroacetyl primaquine were studied. Methyl ephedrine was used as the internal standard and the detection was carried out at 210 nm. A linear relationship was obtained between the ratio of peak area of sample and internal standard and corresponding concentration of sample. The relative standard deviations of migration time and the ratio of peak area of within-day and between-day for replicate injections were <0.6% and 5.0%, respectively. [Pg.192]

Phinney et al. [Ill] investigated the application of citrus pectins, as chiral selectors, to enantiomer separations in capillary electrophoresis. Successful enantioreso-lution of primaquine and other antimalarials, was achieved by utilizing potassium polypectate as the chiral selector. Changes in pH, chiral additive concentration, and capillary type were studied in relation to chiral resolution. The effect of degree of esterification of pectin materials on chiral recognition was evaluated. [Pg.194]

Valproic acid has been determined in human serum using capillary electrophoresis and indirect laser induced fluorescence detection [26], The extract is injected at 75 mbar for 0.05 min onto a capillary column (74.4 cm x 50 pm i.d., effective length 56.2 cm). The optimized buffer 2.5 mM borate/phosphate of pH 8.4 with 6 pL fluorescein to generate the background signal. Separation was carried out at 30 kV and indirect fluorescence detection was achieved at 488/529 nm. A linear calibration was found in the range 4.5 144 pg/mL (0 = 0.9947) and detection and quantitation limits were 0.9 and 3.0 pg/mL. Polonski et al. [27] described a capillary isotache-phoresis method for sodium valproate in blood. The sample was injected into a column of an EKI 02 instrument for separation. The instrument incorporated a conductimetric detector. The mobile phase was 0.01 M histidine containing 0.1% methylhydroxycellulose at pH 5.5. The detection limit was 2 pg/mL. [Pg.230]

Parameters that should be tested in HPLC method development are flow rate, column temperature, batch and supplier of the column, injection volume, mobile phase composition and buffer pH, and detection wavelength [2], For GC/GLC methods, one should investigate the effects of column temperature, mobile phase flow rate, and column lots or suppliers [38], For capillary electrophoresis, changes in temperature, buffer pH, ionic strength, buffer concentrations, detector wavelength, rinse times, and capillaries lots and supplier should be studied [35, 36], Typical variation such as extraction time, and stability of the analytical solution should be also evaluated [37],... [Pg.256]

Factors Affecting Ionic Migration. Effect of Temperature. pH and Ionic Strength. Electro-osmosis. Supporting Medium. Detection of Separated Components. Applications of Traditional Zone Electrophoresis. High-performance Capillary Electrophoresis. Capillary Electrochromatography. Applications of Capillary El ectrochromatography. ... [Pg.7]

Analytical methods are ripe for attack using Al methods. Capillary electrophoresis is a routine separation technique, but like other separation techniques, its effectiveness is correlated strongly with experimental conditions. Hence it is important to optimize experimental conditions to achieve the maximum degree of separation. Zhang and co-workers41 studied the separation of mixtures in reserpine tablets, in which vitamin B1 and dibazolum may be incompletely separated, as may promethazine hydrochloride and chloroquine... [Pg.376]

Anions and uncharged analytes tend to spend more time in the buffered solution and as a result their movement relates to this. While these are useful generalizations, various factors contribute to the migration order of the analytes. These include the anionic or cationic nature of the surfactant, the influence of electroendosmosis, the properties of the buffer, the contributions of electrostatic versus hydrophobic interactions and the electrophoretic mobility of the native analyte. In addition, organic modifiers, e.g. methanol, acetonitrile and tetrahydrofuran are used to enhance separations and these increase the affinity of the more hydrophobic analytes for the liquid rather than the micellar phase. The effect of chirality of the analyte on its interaction with the micelles is utilized to separate enantiomers that either are already present in a sample or have been chemically produced. Such pre-capillary derivatization has been used to produce chiral amino acids for capillary electrophoresis. An alternative approach to chiral separations is the incorporation of additives such as cyclodextrins in the buffer solution. [Pg.146]


See other pages where Capillary electrophoresis effecting is mentioned: [Pg.14]    [Pg.397]    [Pg.14]    [Pg.397]    [Pg.610]    [Pg.277]    [Pg.183]    [Pg.54]    [Pg.299]    [Pg.321]    [Pg.73]    [Pg.527]    [Pg.542]    [Pg.604]    [Pg.76]    [Pg.430]    [Pg.395]    [Pg.330]    [Pg.55]    [Pg.194]    [Pg.397]    [Pg.181]    [Pg.178]    [Pg.367]    [Pg.476]    [Pg.144]    [Pg.145]    [Pg.397]   
See also in sourсe #XX -- [ Pg.40 , Pg.41 ]




SEARCH



Capillary effect

© 2024 chempedia.info