Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene-propylene rubbers

Table VIII. Effect of reaction temperature on molecular weight of butadiene-propylene rubber (BPR). Polymerization conditions as in Table VII, with i-Bu3Al as alkylaluminum compound. Data from Ref. 19. Table VIII. Effect of reaction temperature on molecular weight of butadiene-propylene rubber (BPR). Polymerization conditions as in Table VII, with i-Bu3Al as alkylaluminum compound. Data from Ref. 19.
In view of the low cost of the monomers employed, the alternating butadiene-propylene rubbers may have more than academic interest. [Pg.159]

Natural rubber Styrene-butadiene rubber Polybutadiene Polyisoprene Nitrile rubber Halogenated nitrile rubber Ethylene-propylene rubber EPDM... [Pg.440]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

A convenient term for any material possessing the properties of a rubber but produced from other than natural sources. A synthetic version of natural rubber has been available for many years with the same chemical formula, i.e., cis-1,4-polyisoprene, but it has not displaced the natural form. See also Butyl Rubber, Chloroprene Rubber, Ethylene-Propylene Rubber, Nitrile Rubber, Silicone Rubber and Styrene-Butadiene Rubber. [Pg.63]

Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]... Figure 14.9 Effect of various impact modifiers (25wt%) on the notched Izod impact strength of recycled PET (as moulded and annealed at 150°C for 16 h) E-GMA, glycidyl-methacrylate-functionalized ethylene copolymer E-EA-GMA, ethylene-ethyl acrylate-glycidyl methacrylate (72/20/8) terpolymer E-EA, ethylene-ethyl acrylate EPR, ethylene propylene rubber MA-GPR, maleic anhydride grafted ethylene propylene rubber MBS, poly(methyl methacrylate)-g-poly(butadiene/styrene) BuA-C/S, poly(butyl acrylate-g-poly(methyl methacrylate) core/shell rubber. Data taken from Akkapeddi etal. [26]...
Hydrogenated Diblock of Poly(Butadiene)-Poly(Isoprene) to give Polyethylene-propylene rubber. [Pg.416]

Ethylene-propylene rubber Fluoro-rubber Hypalon Natural rubber Neoprene rubber Nitrile rubber Polysulphide rubber Polyurethane rubber Silicone rubber Styrene-butadiene rubber (SBR)... [Pg.124]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

Sequence distribution studies on several types of rubber by 13C-NMR technique have been reported. Some of the more recent reports include silicone rubbers [28-30], SBR [31], acrylonitrile-butadiene rubber (NBR) [32,33], polyurethane [34,35], polyepichlorohydrin [36], ethylene-norbonene [37] and ethylene-propylene rubber [4, 16, 25, 38-44]. The NMR studies on EPDM have been carried out extensively, because it is one of the important parameters, which control the physical properties of the elastomer. For example, ethylene sequence can influence the crystallisation kinetic and melting behaviour of the rubber [38]. [Pg.413]

Since compounds of the type XVII have shown comparable activity in a number of systems including cis-polybutadiene, styrene-butadiene rubber, and ethylene-propylene rubber, they have some commercial promise, and development work on these compounds is continuing. Nevertheless, they are not completely nondiscoloring, and in certain applications, particularly carboxylated styrene-butadiene latex films, yellow discoloration caused by the antioxidant is a serious drawback. We therefore turned our attention to ortho-linked compounds derived from 2,4-dialkylphenols. [Pg.148]

FIG. 18.3 Activation energy of diffusion as a function of Tg for 21 different polymers from low to high temperatures, ( ) odd numbers (O) even numbers 1. Silicone rubber 2. Butadiene rubber 3. Hydropol (hydrogenated polybutadiene = amorphous polyethylene) 4. Styrene/butadiene rubber 5. Natural rubber 6. Butadiene/acrylonitrile rubber (80/20) 7. Butyl rubber 8. Ethylene/propylene rubber 9. Chloro-prene rubber (neoprene) 10. Poly(oxy methylene) 11. Butadiene/acrylonitrile rubber (60/40) 12. Polypropylene 13. Methyl rubber 14. Poly(viny[ acetate) 15. Nylon-11 16. Poly(ethyl methacrylate) 17. Polyethylene terephthalate) 18. Poly(vinyl chloride) 19. Polystyrene 20. Poly (bisphenol A carbonate) 21. Poly(2,6 dimethyl-p.phenylene oxide). [Pg.669]

The major general purpose rubbers are natural rubber, styrene-butadiene rubber, butadiene rubber, isoprene rubber, and ethylene-propylene rubber. These rubbers are used in tires, mechanical goods, and similar applications. Specialty elastomers provide unique properties such as oil resistance or extreme heat stability. Although this differentiation is rather arbitrary, it tends also to classify the polymers according to volumes used. Styrene-butadiene rubber, butadiene rubber, and ethylene-propylene rubber account for 78 percent of all synthetic rubber consumed. [Pg.690]

Many of the commercial synthetic elastomers are synthesized from more than one monomer, such as styrene-butadiene and ethylene-propylene rubbers. The properties of the resultant polymer depend on the ratio of the two monomers in the polymer and upon the distribution of the monomers within the chain. [Pg.692]

Buna S was a copolymer of butadiene with styrene Buna N a copolymer with acrylonitrile. The product was first introduced to the public at the Berlin Motor Show in 1936. The trade name Buna CB was used for a polybutadiene rubber made by Bunawerke Hiils using a Ziegler-Natta- type process. Today, Buna EP is the name for a range of ethylene-propylene rubbers made by Lanxess (formerly Bayer, which acquired Bunawerke Hiils in 1994). [Pg.52]

Other rubber systems have been commercially successful. Styrene block copolymers yield a HIPS product with a small particle size and provide high gloss. A mixed rubber system consisting of styrene-butadiene block rubber and/or ethylene-propylene diene modified (EPDM) rubber can be blended with the polybutadiene to form bimodal rubber particle size distribution for a... [Pg.257]

The use of olefin rubbers [18] as good impact modifiers for sPS when used in conjunction with S-B or S-B-S block copolymers, which may be hydrogenated in the butadiene phase, has also been described. Instead of butadiene, isoprene can be used. Examples of the olefinic polymers are polyethylene, ethylene-propylene rubbers (EPR) and polypropylene-(ethylene propylene rubber) block copolymers. Here the styrene block copolymers presumably function as... [Pg.421]

Liquid polymers are useful as tackifiers for rubbers, 72) and acrylic coatings. The most interesting are hydroxytelechelic polybutadienes, especially liquid butadiene-acrylonitrile (85/15) copolymers (trademark CN-15, ARCO). This product, known since 1971 as a tackifier, has the following characteristics viscosity 493 poises at 30 °C, tv[n = 4400, hydroxyl number/chain = 2.5. The incorporation of 5% of CN-15 in ethylene-propylene rubber (EPT Nordel 1070) increases its tack considerably 173) close to that of natural rubber or butyl rubbers (Table 4.1). [Pg.209]

The main types of rubber used in the field of anti-corrosion are natural rubber, polyisoprene, polybutadiene, polyurethane, butyl rubber, styrene butadiene, nitrile rubber, ethylene propylene rubber, polychloroprene, silicone rubber, and vinylidene rubber. The wide ranges of available natural and synthetic rubbers offer a versatility of properties to suit almost every corrosive condition encountered in the process industries. [Pg.15]

Elastomers styrene-butadiene rubbers and latexes, thermoplastic rubbers, nitrile rubber, ethylene-propylene rubber, polychloroprene rubber. [Pg.231]

A variety of synthetic rubbers are commercially used styrene-butadiene rubber (SBR), polybutadiene, ethylene-propylene rubber, butyl and halobutyl rubber, etc. The most important is SBR, which is mainly used as a major component of all passenger tyres and in significant amounts in most tyre products. [Pg.13]

The early synthetic rubbers were diene polymers such as poly butadiene. Diene elastomers possess a considerable degree of unsaturation, some of which provide the sites required for the light amount of cross-linking structurally necessary for elastomeric properties. The residual double bonds make diene elastomers vulnerable to oxidative and ozone attack. To overcome this problem, saturated elastomers like butyl rubber and ethylene-propylene rubber (EPR) were developed. These rubbers were, unfortunately, not readily vulcanized by conventional means. To enhance cure, it was therefore necessary to... [Pg.142]

There is a relatively large range of different types of rubbers that are used in different components in the food industry that can get in contact with the food. The most important of these are natural rubber (NR ds-l,4-polyisoprene), nitrile rubber (i.e., acrylonitrile-butadiene copolymer), ethylene-propylene rubber (EPR), rubbers of ethylene-propylene monomer (EPM) and EPDM, SBR, fluorocarbon rubber, silicone rubber, polybutadiene rubber (BR), polychloroprene rubber, and TPE. In addition, there is the use of rubber blends, i.e., blends of NR and N Rr with SBR [19]. [Pg.122]

A process has been developed for electroplating a PPA resin, modified with ethylene propylene diene monomer rubber, ethylene-propylene rubber, and styrene-butadiene rubber. As etching solution, chromic acid is used. However, it has been found that the concentration of Cr + is crucial for the success of the method. The concentration of Cr + is in the range of 50-55 gU Low levels of Cr + result in poor adhesion of the final metal plating, while high levels of Cr + can cause the formation of small blisters in the metal plating. The influence of the process parameters on the peel strength is shown in Table 12.9. [Pg.412]

Polymers Resins I Butyl Rubber, Epichlorohydrin Elastomers, Ethylene Propylene Rubber, Hypalon (TM) Production, Neoprene Production, Nitrile Butadiene Rubber, Polybutadiene Rubber, Polysulfide Rubber, Styrene-Butadiene Rubber Latex 07/31/97... [Pg.1289]

Matty polymers may be used for produetion of wire and cable. These include polyethylene, crosslinked polyethylene, chlorosnlfonated polyethylene, ethylene-propylene rubber, polyvinylchloride, bntyl robber, styrene bntadiene rubber, silicone rubber, natural robber, polyisoprene robber, polyurethane, nitrile butadiene rubber, polychloroprene, polysulfone, thermoplastie elastomers, polyimide, and polyamides. Selection of polymer(s) depends on projected conditions of service such as temperature, presence of corrosive liquids, surrounding temperature, quality of insulation, etc. [Pg.507]

The process may easily be transformed for the synthesis of other elastomers and copolymers with a double bond in the backbone of the monomer unit. Therefore, the range of elastomers is extensive isoprene, butadiene, butadiene-styrene rubbers, ethylene-propylene terpolymer, and so on. [Pg.259]

Synthetic rubbers. Common name of rubbers manufactured by polymerization of monomers. Main types acrylonitrile/butadiene rubber, butadiene rubber, butyl rubber, chloroprene rubber, ethylene/propylene rubber, isoprene rubber, sty-rene/butadiene rubber. [Pg.28]

Styrene/ butadiene rubber SBR 3 200 000 Ethylene/propylene rubber EPM 250 000... [Pg.729]


See other pages where Butadiene-propylene rubbers is mentioned: [Pg.159]    [Pg.159]    [Pg.128]    [Pg.360]    [Pg.464]    [Pg.107]    [Pg.169]    [Pg.118]    [Pg.167]    [Pg.40]    [Pg.274]    [Pg.128]    [Pg.360]    [Pg.182]    [Pg.552]    [Pg.523]    [Pg.318]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Butadiene-propylene

© 2024 chempedia.info