Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bone resorption, parathyroid hormone

Factors controlling calcium homeostasis are calcitonin, parathyroid hormone(PTH), and a vitamin D metabolite. Calcitonin, a polypeptide of 32 amino acid residues, mol wt - SGOO, is synthesized by the thyroid gland. Release is stimulated by small increases in blood Ca " concentration. The sites of action of calcitonin are the bones and kidneys. Calcitonin increases bone calcification, thereby inhibiting resorption. In the kidney, it inhibits Ca " reabsorption and increases Ca " excretion in urine. Calcitonin operates via a cyclic adenosine monophosphate (cAMP) mechanism. [Pg.376]

Parathyroid hormone, a polypeptide of 83 amino acid residues, mol wt 9500, is produced by the parathyroid glands. Release of PTH is activated by a decrease of blood Ca " to below normal levels. PTH increases blood Ca " concentration by increasing resorption of bone, renal reabsorption of calcium, and absorption of calcium from the intestine. A cAMP mechanism is also involved in the action of PTH. Parathyroid hormone induces formation of 1-hydroxylase in the kidney, requited in formation of the active metabolite of vitamin D (see Vitamins, vitamin d). [Pg.376]

Although it is being found that vitamin D metaboUtes play a role ia many different biological functions, metaboHsm primarily occurs to maintain the calcium homeostasis of the body. When calcium semm levels fall below the normal range, 1 a,25-dihydroxy-vitainin is made when calcium levels are at or above this level, 24,25-dihydroxycholecalciferol is made, and 1 a-hydroxylase activity is discontiaued. The calcium homeostasis mechanism iavolves a hypocalcemic stimulus, which iaduces the secretion of parathyroid hormone. This causes phosphate diuresis ia the kidney, which stimulates the 1 a-hydroxylase activity and causes the hydroxylation of 25-hydroxy-vitamin D to 1 a,25-dihydroxycholecalciferol. Parathyroid hormone and 1,25-dihydroxycholecalciferol act at the bone site cooperatively to stimulate calcium mobilization from the bone (see Hormones). Calcium blood levels are also iafluenced by the effects of the metaboUte on intestinal absorption and renal resorption. [Pg.137]

Around 99% of calcium is contained in the bones, whereas the other 1% resides in the extracellular fluid. Of this extracellular calcium, approximately 40% is bound to albumin, and the remainder is in the ionized, physiologically active form. Normal calcium levels are maintained by three primary factors parathyroid hormone, 1,25-dihydroxyvitamin D, and calcitonin. Parathyroid hormone increases renal tubular calcium resorption and promotes bone resorption. The active form of vitamin D, 1,25-dihydroxyvitamin D, regulates absorption of calcium from the GI tract. Calcitonin serves as an inhibitory factor by suppressing osteoclast activity and stimulating calcium deposition into the bones. [Pg.1482]

Parathyroid hormone stimulates bone resorption by increasing the number and activity of osteoclasts. This demineralization process in the bone releases calcium and phosphate into the blood. Although the action of PTH on the bone appears to increase blood phosphate, its action on the kidney, which increases phosphate excretion in the urine, more than compensates for this increase and the net effect is a decrease in serum phosphate. [Pg.132]

The a ns wer is a. (Hardman, pp 1525-1528.) Pa r a thyroid ho r m o ne is synthesized by and released from the parathyroid gland increased synthesis of PTI1 is a response to low serum Ca concentrations. Resorption and mobilization of Ca and phosphate from bone are increased in response to elevated PTI1 concentrations. Replacement of body stores of Ca is enhanced by the capacity of PTH to promote increased absorption of Ca by the small intestine in concert with vitamin D, which is the primary factor that enhances intestinal Ca absorption. Parathyroid hormone also causes an increased renal tubular reabsorption of Ca and excretion of phosphate. As a consequence of these effects, the extracellular Ca concentration becomes elevated. [Pg.257]

Calcium-phosphorus balance is mediated through a complex interplay of hormones and their effects on bone, GI tract, kidney, and parathyroid gland. As kidney disease progresses, renal activation of vitamin D is impaired, which reduces gut absorption of calcium. Low blood calcium concentration stimulates secretion of parathyroid hormone (PTH). As renal function declines, serum calcium balance can be maintained only at the expense of increased bone resorption, ultimately resulting in renal osteodystrophy (ROD) (Fig. 76-7). [Pg.881]

High phosphate diets cause decreased Ca absorption, secondary hyperparathyroidism, accelerated bone resorption and soft tissue calcification in some animals, but not in normal humans. Although phosphates may decrease Ca absorption in man at very high (> 2000 mg/day) Ca intakes, they do not do so at more moderate Ca levels and enhance Ca absorption at very low levels (< 500 mg/day). Phosphates increase renal tubular reabsorption and net retention of Ca. At low Ca intakes, phosphates stimulate parathyroid hormone (PTH) secretion without causing net bone resorption. [Pg.33]

A role for a collagenase, presumably fibroblast-type collagenase, in bone resorption has been indicated by studies employing the Searle A-carboxyl alkyl synthetic collagenase inhibitor CI-1 (compound (197) in Table 8.18) and its less potent stereoisomer CI-2 (compound (198) in Table 8.18) [207]. Cultured embryonic mouse calvaria treated with parathyroid hormone exhibit loss of calcium and show pronounced collagen resorption. CI-1 inhibited the collagen resorption in a dose-dependent manner at significantly lower concentrations than CI-2, but had only a small effect on calcium loss. This inhibitory effect was reversible and not due to inhibitor cytotoxicity. [Pg.324]

The polypeptide parathormone is released from the parathyroid glands when plasma Ca + level falls. It stimulates osteoclasts to increase bone resorption in the kidneys, it promotes calcium reabsorption, while phosphate excretion is enhanced. As blood phosphate concentration diminishes, the tendency of calcium to precipitate as bone mineral decreases. By stimulating the formation of vit D hormone, parathormone has an indirect effect on the enteral uptake of Ca + and phosphate. In parathormone deficiency, vitamin D can be used as a substitute that unlike parathormone, is effective orally. [Pg.264]

Calcitriol and parathyroid hormone, on the one hand, and calcitonin on the other, ensure a more or less constant level of Ca "" in the blood plasma and in the extracellular space (80-110 mg 2.0-2.6 mM). The peptide parathyroid hormone (PTH 84 AA) and the steroid calcitriol (see p. 374) promote direct or indirect processes that raise the Ca "" level in blood. Calcitriol increases Ca "" resorption in the intestines and kidneys by inducing transporters. Parathyroid hormone supports these processes by stimulating calcitriol biosynthesis in the kidneys (see p. 330). In addition, it directly promotes resorption of Ca "" in the kidneys (see p. 328) and Ca "" release from bone (see B). The PTH antagonist calcitonin (32 AA) counteracts these processes. [Pg.342]

Parathyroid hormone is a single-chain polypeptide of 84 amino acids which is produced in the parathyroid glands. It increases serum calcium and decreases serum phosphate. In bone it promotes resorption of calcium. It indirectly increases osteoclastic activity by promoting the action of osteoblasts. It has been shown that in low doses PTH may even increase bone formation without stimulating bone resorption. In the kidney PTH increases resorption of calcium and it increases excretion of phosphate. An other important activity in the kidney is the enhanced synthesis of 1,25-dihydroxyvitamin D. An increased serum calcium level inhibits PTH secretion and increased serum phosphate decreases free serum calcium and thus stimulates PTH secretion. [Pg.398]

Renal osteodystrophy is a complex disorder with several pathogenic factors. Histological evidence of bone disease is common in early renal failure and deficits in calcitriol synthesis seems to be an important factor in the pathogenesis of secondary hyperparathyroidism in early CRF. The most common component is osteitis fibrosa manifested as subperiosteal resorption of bone. This is due to decreased excretion as well as increased secretion of parathyroid hormone. In CRF small increments of serum phosphorus cause small decreases in serum calcium. [Pg.612]

Osteoclast. A large multinuclear cell associated with the absorption and removal of bone, osteoclasts become highly active in the presence of parathyroid hormone, causing increased bone resorption and release of bone salts (phosphoms, and especially calcium) into the extracellular fluid. Ovalbumin. An albumin obtainable from the whites of eggs. [Pg.573]

Mechanism of Action An antibiotic that forms complexes with DNA, inhibiting DNA-directed RNA synthesis. May inhibit parathyroid hormone effect on osteoclasts and inhibit bone resorption. TherapeuticEffect Lowers serum calcium and phosphate levels. Blocks hypercalcemic action of vitamin Dand action of parathyroid hormone. Decreases serum calcium. [Pg.1002]

Calcium is present in three forms e.g., as free calcium ion, bound to plasma protein albumin and in diffusable complexes. The endocrine system, through parathyroid hormone and calcitonin, helps in keeping the concentration of ionized plasma calcium in normal level. Decrease in plasma levels of ionized calcium leads to increased parathyroid hormone secretion. Parathyroid hormone tends to increase plasma calcium level by increasing bone resorption, increasing intestinal absorption and increasing reabsorption of calcium in kidney. Vitamin D acts by stimulating... [Pg.390]

Estrogens have a number of important metabolic and cardiovascular effects. They seem to be partially responsible for maintenance of the normal structure and function of the skin and blood vessels in women. Estrogens also decrease the rate of resorption of bone by promoting the apoptosis of osteoclasts and by antagonizing the osteoclastogenic and pro-osteoclastic effects of parathyroid hormone and interleukin-... [Pg.899]

Three hormones serve as the principal regulators of calcium and phosphate homeostasis parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and the steroid vitamin D (Figure 42-2). Vitamin D is a prohormone rather than a true hormone, because it must be further metabolized to gain biologic activity. PTH stimulates the production of the active metabolite of vitamin D, l,25(OH)2D. l,25(OH)2D, on the other hand, suppresses the production of PTH. l,25(OH)2D stimulates the intestinal absorption of calcium and phosphate. l,25(OH)2D and PTH promote both bone formation and resorption in part by stimulating the proliferation and differentiation of osteoblasts and osteoclasts. Both... [Pg.954]

Typical changes in bone mineral density with time after the onset of menopause, with and without treatment. In the untreated condition, bone is lost during aging in both men and women. Fluoride, strontium (Sr2+), and parathyroid hormone (PTH) promote new bone formation and can increase bone mineral density in subjects who respond to it throughout the period of treatment, although PTH also activates bone resorption. In contrast, estrogen, calcitonin, and bisphosphonates block bone resorption. This leads to a transient increase in bone mineral density because bone formation is not initially decreased. However, with time, both bone formation and bone resorption are decreased with these pure antiresorptive agents, and bone mineral density reaches a new plateau. [Pg.971]

Cholecalciferol Regulate gene transcription via the vitamin D receptor Stimulate intestinal calcium absorption, bone resorption, renal calcium and phosphate reabsorption decrease parathyroid hormone (PTH) promote innate immunity inhibit adaptive immunity Osteoporosis, osteomalacia, renal failure, malabsorption Hypercalcemia, hypercalciuria the vitamin D preparations have much longer half-life than the metabolites and analogs... [Pg.974]

Morgan, D. B., Monod, A., Russell, R. G. G., Fleisch, H. Influence of dichlormethylene diphosphonate (C12MDP) and calcitonin on bone resorption, lactate production and phosphate and pyrophosphatase content of mouse calvaria treated with parathyroid hormone in vitro. Calc. Tiss. Res. 13, 287 (1973)... [Pg.128]

Certain human populations depend on dietary sources of vitamin D because of insufficient biosynthesis of the vitamin due to inadequate skin exposure to sunlight. The classic symptoms of vitamin D deficiency are rickets in children and osteomalacia in adults. 25-Hydroxyvitamin D3 is the major circulating metabolite in the blood, but the hormonally active form of the vitamin is 1,25-dihydroxyvitamin D3. The latter metabolite stimulates the intestine to absorb calcium and phosphate by two independent mechanisms and acts with parathyroid hormone to mobilize calcium, accompanied by phosphate, from the bone fluid compartment into the bloodstream. 1,25-dihydroxyvitamin D 3 is also involved in the formation of osteoclasts—giant cells that are solely responsible for the resorption of bone matrix (33). Resorption is an essential process for the development, growth, maintenance, and repair of bone. [Pg.330]

The major location of calcium in the body is in the skeleton, which contains more than 90% of the body calcium as phosphate and carbonate. Bone resorption and formation keeps this calcium in dynamic equilibrium with ionized and complexed calcium in blood, cellular fluids and membranes. Homeostasis is mainly regulated by the parathyroid hormone and vitamin D which lead to increased blood calcium levels, and by a thyroid hormone, calcitonin, which controls the plasma calcium concentration J5 Increasing the concentration of calcitonin decreases the blood calcium level, hence injections of calcitonin are used to treat severe hyperalcaemia arising from hyperparathyroidism, vitamin D intoxication or the injection of too high a level of parathyroid extract. High levels of calcitonin also decrease resorption of calcium from bone. Hypocalcaemia stimulates parathyroid activity, leading to increased release of calcium from bone, reduction in urinary excretion of calcium and increased absorption of calcium from the intestine. Urinary excretion of phosphate is enhanced. [Pg.188]

Parathyroid Hormone. The role of the parathyroid gland and PTH in controlling calcium metabolism was previously discussed. A prolonged or continuous increase in the secretion of PTH increases blood calcium levels by several methods, including increased resorption of calcium from bone. High levels of PTH accelerate bone breakdown (catabolic effect) to mobilize calcium for other physiologic needs. [Pg.465]

Disease Hypoparathyroidism Pathophysiology Decreased parathyroid hormone secretion leads to impaired bone resorption and hypocalcemia Primary Drug Treatment Calcium supplements, vitamin D... [Pg.467]

Hyperparathyroidism Increased parathyroid hormone secretion, usually caused by parathyroid tumors leads to excessive bone resorption and hypercalcemia Usually treated surgically by partial or complete resection of the parathyroid gland... [Pg.467]


See other pages where Bone resorption, parathyroid hormone is mentioned: [Pg.124]    [Pg.124]    [Pg.277]    [Pg.342]    [Pg.863]    [Pg.509]    [Pg.187]    [Pg.35]    [Pg.42]    [Pg.298]    [Pg.288]    [Pg.396]    [Pg.397]    [Pg.120]    [Pg.222]    [Pg.693]    [Pg.956]    [Pg.69]    [Pg.443]    [Pg.84]    [Pg.500]    [Pg.471]   


SEARCH



Bone resorption, parathyroid hormone effects

Parathyroid

Parathyroid hormone

© 2024 chempedia.info