Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extracellular space

Fig. 1. The GP Ib-IX-V complex. The complex consists of seven transmembrane polypeptides denoted GP Iba (mol wt 145,000), GP IbP (mol wt 24,000), GPIX (mol wt 17,000) and GP V (mol wt 82,000), in a stoichiometry of 2 2 2 1. The hatched region represents the plasma membrane. The area above the hatched region represents the extracellular space that below represents the cytoplasm. The complex is a major attachment site between the plasma membrane and the cytoskeleton. Two molecules associated with the cytoplasmic domain are depicted a 14-3-3 dimer, which may mediate intracellular signaling, and actin-binding protein, which connects the complex to the cortical cytoskeleton and fixes its position and influences its function. Fig. 1. The GP Ib-IX-V complex. The complex consists of seven transmembrane polypeptides denoted GP Iba (mol wt 145,000), GP IbP (mol wt 24,000), GPIX (mol wt 17,000) and GP V (mol wt 82,000), in a stoichiometry of 2 2 2 1. The hatched region represents the plasma membrane. The area above the hatched region represents the extracellular space that below represents the cytoplasm. The complex is a major attachment site between the plasma membrane and the cytoskeleton. Two molecules associated with the cytoplasmic domain are depicted a 14-3-3 dimer, which may mediate intracellular signaling, and actin-binding protein, which connects the complex to the cortical cytoskeleton and fixes its position and influences its function.
Sodium chloride [7647-14-5] is an essential dietary component. It is necessary for proper acid—base balance and for electrolyte transfer between the iatra-and extracellular spaces. The adult human requirement for NaCl probably ranges between 5—8 g/d. The normal diet provides something ia excess of 10 g/d NaCl, and adding salt duting cooking or at the table iacreases this iatake. [Pg.480]

Hydrolases represent a significant class of therapeutic enzymes [Enzyme Commission (EC) 3.1—3.11] (14) (Table 1). Another group of enzymes with pharmacological uses has budt-ia cofactors, eg, in the form of pyridoxal phosphate, flavin nucleotides, or zinc (15). The synthases, and other multisubstrate enzymes that require high energy phosphates, are seldom available for use as dmgs because the required co-substrates are either absent from the extracellular space or are present ia prohibitively low coaceatratioas. [Pg.307]

Fi re 12.8 Schematic diagram of the trimerlc porin molecule viewed from the extracellular space. Blue regions illustrate the walls of the three porin barrels, the loop regions that constrict the channel are red and the calcium atoms are orange. [Pg.231]

Cathepsins are intracellular proteinases that reside within lysosomes or specific intracellular granules. Cathepsins are used to degrade proteins or pqffides that are internalised from the extracellular space. Some cathepsins such as cathepsin-G or cathepsin-K may be released from the cell to degrade specific extracellular matrix proteins. All cathepsins except cathepsin-G (serine) and cathepsin-D (aspartyl) are cysteine proteinases. [Pg.339]

During exocytosis, intracellular vesicles fuse with the plasmalemma. As a consequence, the vesicle components are incoiporated into the plasma membrane and the vesicle content is released into the extracellular space. We distinguish constitutive and regulated exocytosis. [Pg.487]

The catalytic cycle of the Na+/K+-ATPase can be described by juxtaposition of distinct reaction sequences that are associated with two different conformational states termed Ei and E2 [1]. In the first step, the Ei conformation is that the enzyme binds Na+ and ATP with very high affinity (KD values of 0.19-0.26 mM and 0.1-0.2 pM, respectively) (Fig. 1A, Step 1). After autophosphorylation by ATP at the aspartic acid within the sequence DKTGS/T the enzyme occludes the 3 Na+ ions (Ei-P(3Na+) Fig. la, Step 2) and releases them into the extracellular space after attaining the E2-P 3Na+ conformation characterized by low affinity for Na+ (Kq5 = 14 mM) (Fig. la, Step 3). The following E2-P conformation binds 2 K+ ions with high affinity (KD approx. 0.1 mM Fig. la, Step 4). The binding of K+ to the enzyme induces a spontaneous dephosphorylation of the E2-P conformation and leads to the occlusion of 2 K+ ions (E2(2K+) Fig. la, Step 5). Intracellular ATP increases the extent of the release of K+ from the E2(2K+) conformation (Fig. la, Step 6) and thereby also the return of the E2(2K+) conformation to the EiATPNa conformation. The affinity ofthe E2(2K+) conformation for ATP, with a K0.5 value of 0.45 mM, is very low. [Pg.813]

Neurotransmitter transporters create neurotransmitter gradients across membranes, which results in the uptake of the neurotransmitter. By working in reverse they can also release neurotransmitter into the extracellular space (efflux by nonexocytotic release). [Pg.836]

Neurotransmitter transporters determine the neurotransmitter concentration in the interstitium. High-affinity transporters can efficiently remove neurotransmitter from the extracellular space because cellular uptake is typically coupled to the translocation of sodium ions. [Pg.836]

At the level of a single channel, addition of ACh is followed by transient openings of the channel. The current i flowing through an open channel is 4 pA at a membrane potential Voi-l 00 mV. Since one ampere (A) represents the flow of 6.24-1018 charges per second, 2.5-107 Na+ ions per second flow through an open channel. The conductance g of a plasma membrane channel is the measure of the ease of flow of cuirent between the extracellular space and the cytosol or vice... [Pg.871]

Protein trafficking is the transport of proteins to their correct subcellular compartments or to the extracellular space ( secretory pathway ). Endo- and exocytosis describe vesicle budding and fusion at the plasma membrane and are by most authors not included in the term protein trafficking. Protein quality control comprize all cellular mechanisms, monitoring protein folding and detecting aberrant forms. [Pg.1015]

Once released, transmitters are inactivated by diffusion into the neighbouring extracellular space, combined with one of two specific pathways either extracellular degradation by enzymes that face the extracellular space, or uptake into cells. [Pg.1173]

Plasma membrane channels. The most common mechanism for the movement of into smooth muscle cells Ifom the extracellular space is the electrodiffusion of Ca " ions through highly selective channels. This movement can be significant in two quite different ways. First, Ca ions carry two positive charges and, in fact, most of the inward charge movement across the plasma membrane of smooth muscle myocytes is carried by Ca. Most smooth muscle action potentials are known to be Ca " action potentials. And second, the concentration of intracellular free calcium, the second messenger, is increased by inward calcium movement. [Pg.186]

Sarcoplasmic reticulum Ca -channels. In many smooth muscle cells the rise of intracellular calcium which triggers contraction comes from the flow of calcium from the SR through Ca channels. In others, the SR contributes some unknown fraction of the triggering calcium relative to the amount which comes from the extracellular space through the plasma membrane Ca -channels. There are at least two kinds of Ca -channels in the SR. [Pg.189]


See other pages where Extracellular space is mentioned: [Pg.460]    [Pg.484]    [Pg.284]    [Pg.202]    [Pg.358]    [Pg.227]    [Pg.228]    [Pg.229]    [Pg.231]    [Pg.232]    [Pg.233]    [Pg.248]    [Pg.253]    [Pg.284]    [Pg.288]    [Pg.272]    [Pg.290]    [Pg.307]    [Pg.31]    [Pg.126]    [Pg.325]    [Pg.705]    [Pg.749]    [Pg.801]    [Pg.812]    [Pg.815]    [Pg.822]    [Pg.823]    [Pg.832]    [Pg.1035]    [Pg.1326]    [Pg.116]    [Pg.158]    [Pg.159]    [Pg.162]    [Pg.185]    [Pg.189]   
See also in sourсe #XX -- [ Pg.28 ]

See also in sourсe #XX -- [ Pg.49 , Pg.172 , Pg.196 , Pg.235 , Pg.307 ]

See also in sourсe #XX -- [ Pg.48 , Pg.53 , Pg.54 , Pg.118 , Pg.119 , Pg.123 , Pg.135 ]

See also in sourсe #XX -- [ Pg.104 , Pg.204 ]

See also in sourсe #XX -- [ Pg.506 ]

See also in sourсe #XX -- [ Pg.23 , Pg.33 , Pg.167 , Pg.169 , Pg.171 , Pg.224 ]

See also in sourсe #XX -- [ Pg.9 , Pg.18 ]

See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Diffusion in the extracellular space

Extracellular fluid space

Extracellular space compartmental

Extracellular space ligand concentration

Extracellular space structure

Insulin extracellular space effect

Restricted extracellular space

© 2024 chempedia.info