Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adaptive inhibition

Chemical Stabilization Processes. This method is more versatile and thus has been used successfully for more materials than the physical stabilization process. Chemical stabilization is more adaptable for condensation polymers than for vinyl polymers because of the fast yet controUable curing reactions and the absence of atmospheric inhibition. [Pg.405]

Other alloying ingredients in lead, eg, arsenic (0.5—0.7%) and silver [7440-22-4] (0.1—0.15%), inhibit grid growth on overcharge and reduce positive grid corrosion. Tin added to a lead alloy produces well-defined castings that are readily adapted to mass production techniques (84). [Pg.577]

Figure 6.23 Schematic diagram illustrating the active site loop regions (red) in three forms of the serpins. (a) In the active form the loop protrudes from the main part of the molecuie poised to interact with the active site of a serine proteinase. The first few residues of the ioop form a short p strand inserted between ps and pis of sheet A. (h) As a result of inhibiting proteases, the serpin molecules are cleaved at the tip of the active site ioop region, in the cleaved form the N-terminal part of the loop inserts itself between p strands 5 and 15 and forms a long p strand (red) in the middie of the p sheet, (c) In the most stable form, the latent form, which is inactive, the N-terminai part of the ioop forms an inserted p strand as in the cleaved form and the remaining residues form a ioop at the other end of the p sheet. (Adapted from R.W. Carreii et ai., Structure 2 257-270, 1994.)... Figure 6.23 Schematic diagram illustrating the active site loop regions (red) in three forms of the serpins. (a) In the active form the loop protrudes from the main part of the molecuie poised to interact with the active site of a serine proteinase. The first few residues of the ioop form a short p strand inserted between ps and pis of sheet A. (h) As a result of inhibiting proteases, the serpin molecules are cleaved at the tip of the active site ioop region, in the cleaved form the N-terminal part of the loop inserts itself between p strands 5 and 15 and forms a long p strand (red) in the middie of the p sheet, (c) In the most stable form, the latent form, which is inactive, the N-terminai part of the ioop forms an inserted p strand as in the cleaved form and the remaining residues form a ioop at the other end of the p sheet. (Adapted from R.W. Carreii et ai., Structure 2 257-270, 1994.)...
Adapted from Van Schaftingcn, E., and Hers, H.-G., 1981. Inhibition of frnctosc-1,6-bisphosphatasc by fructosc-2,6-bis-phosphatc. Proceedings of the National Academy of Science, USA 78 2861-2863.)... [Pg.752]

Psychostimulants. Figure 2 Dopamine molecules have two different possible targets. Both ways are initially increased by DAT inhibition caused by methylphenidate pre- and postsynaptic dopamine receptors. Stimulation of postsynaptic receptors results in inhibition of presynaptic action potential generation. On the other hand, presynaptic receptor stimulation leads to a transmission inhibition of action potentials. Therefore, both mechanisms are responsible for a decrease in vesicular depletion of dopamine into the synaptic cleft (adapted from [2]). [Pg.1042]

A quantitative interpretation of aldonolactone inhibition in terms of an adaptation of the active site to a transition state approaching a planar, glycosyl oxocarbonium ion is made difficult for several reasons. Due to the interconversion between the 1,4- and 1,5-lactones, and their hydrolysis to the aldonic acids, their use is limited to kinetic studies with incubation times of 10 min or less. This was not realized by most investigators prior to 1970. In many cases, only the 1,4-lactone can be isolated its (partial) conversion into... [Pg.328]

Inhibition of D-Glycosida es by Glycon-related Polyhydroxypyrrolidines, Expressed by the Inhibition Constants K in iiM (Adapted from Ref. 97)... [Pg.346]

Figure 2.4 Noradrenergic inhibition of Ca " currents and transmitter release in sympathetic neurons and their processes, (a) Inhibition of currents through N-type Ca " channels by external application of noradrenaline (NA) or by over-expression of G-protein P y2 subunits, recorded from the soma and dendrite of a dissociated rat superior cervical sympathetic neuron. Currents were evoked by two successive 10 ms steps from —70 mV to OmV, separated by a prepulse to -1-90 mV. Note that the transient inhibition produced by NA (mediated by the G-protein Go) and the tonic inhibition produced by the G-protein Piy2 subunits were temporarily reversed by the -1-90 mV depolarisation. (Adapted from Fig. 4 in Delmas, P et al. (2000) Nat. Neurosci. 3 670-678. Reproduced with permission), (b) Inhibition of noradrenaline release from neurites of rat superior cervical sympathetic neurons by the 2-adrenoceptor stimulant UK-14,304, recorded amperometrically. Note that pretreatment with Pertussis toxin (PTX), which prevents coupling of the adrenoceptor to Gq, abolished inhibition. (Adapted from Fig. 3 in Koh, D-S and Hille, B (1997) Proc. Natl. Acad. Sci. USA 1506-1511. Reproduced with permission)... Figure 2.4 Noradrenergic inhibition of Ca " currents and transmitter release in sympathetic neurons and their processes, (a) Inhibition of currents through N-type Ca " channels by external application of noradrenaline (NA) or by over-expression of G-protein P y2 subunits, recorded from the soma and dendrite of a dissociated rat superior cervical sympathetic neuron. Currents were evoked by two successive 10 ms steps from —70 mV to OmV, separated by a prepulse to -1-90 mV. Note that the transient inhibition produced by NA (mediated by the G-protein Go) and the tonic inhibition produced by the G-protein Piy2 subunits were temporarily reversed by the -1-90 mV depolarisation. (Adapted from Fig. 4 in Delmas, P et al. (2000) Nat. Neurosci. 3 670-678. Reproduced with permission), (b) Inhibition of noradrenaline release from neurites of rat superior cervical sympathetic neurons by the 2-adrenoceptor stimulant UK-14,304, recorded amperometrically. Note that pretreatment with Pertussis toxin (PTX), which prevents coupling of the adrenoceptor to Gq, abolished inhibition. (Adapted from Fig. 3 in Koh, D-S and Hille, B (1997) Proc. Natl. Acad. Sci. USA 1506-1511. Reproduced with permission)...
In the absence of suitable cell wall mutants, DCB-adapted tomato cells provide an opportunity to characterise the pectin network of the plant cell wall. It should be noted that synthesis and secretion of hemicellulose is not inhibited but, in the absence of a cellulose framework for it to stick to, most of the xyloglucan secreted remains in soluble form in the cells culture medium (9, 10) while other non-cellulosic polysaccharides and other uronic-acid-rich polymers predominate in the wall. [Pg.95]


See other pages where Adaptive inhibition is mentioned: [Pg.75]    [Pg.75]    [Pg.467]    [Pg.229]    [Pg.37]    [Pg.56]    [Pg.321]    [Pg.327]    [Pg.545]    [Pg.616]    [Pg.787]    [Pg.887]    [Pg.915]    [Pg.978]    [Pg.425]    [Pg.143]    [Pg.196]    [Pg.186]    [Pg.4]    [Pg.28]    [Pg.266]    [Pg.25]    [Pg.127]    [Pg.333]    [Pg.347]    [Pg.349]    [Pg.381]    [Pg.382]    [Pg.179]    [Pg.374]    [Pg.355]    [Pg.335]    [Pg.43]    [Pg.44]    [Pg.44]    [Pg.45]    [Pg.223]    [Pg.57]    [Pg.101]    [Pg.218]    [Pg.65]    [Pg.117]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



© 2024 chempedia.info