Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Barium, stabilizers

Preparation of Plastisol. In all cases the plastisols were prepared on a Wink-worth-Z blade mixer and degassed before use at less than 0.1 mm. of Hg. The same order of mixing and similar mixing and degassing times were employed. A liquid cadmium-barium stabilizer was used. [Pg.157]

Effect of increasing barium stabilizer concentration on rate of discoloration. [Pg.31]

Phenolic resin Schenectady Chemicals Barium stabilizer Reichold Chemical Carbon black... [Pg.226]

It was pointed out in Section XIII-4A that if the contact angle between a solid particle and two liquid phases is finite, a stable position for the particle is at the liquid-liquid interface. Coalescence is inhibited because it takes work to displace the particle from the interface. In addition, one can account for the type of emulsion that is formed, 0/W or W/O, simply in terms of the contact angle value. As illustrated in Fig. XIV-7, the bulk of the particle will lie in that liquid that most nearly wets it, and by what seems to be a correct application of the early oriented wedge" principle (see Ref. 48), this liquid should then constitute the outer phase. Furthermore, the action of surfactants should be predictable in terms of their effect on the contact angle. This was, indeed, found to be the case in a study by Schulman and Leja [49] on the stabilization of emulsions by barium sulfate. [Pg.510]

The most stable protected alcohol derivatives are the methyl ethers. These are often employed in carbohydrate chemistry and can be made with dimethyl sulfate in the presence of aqueous sodium or barium hydroxides in DMF or DMSO. Simple ethers may be cleaved by treatment with BCI3 or BBr, but generally methyl ethers are too stable to be used for routine protection of alcohols. They are more useful as volatile derivatives in gas-chromatographic and mass-spectrometric analyses. So the most labile (trimethylsilyl ether) and the most stable (methyl ether) alcohol derivatives are useful in analysis, but in synthesis they can be used only in exceptional cases. In synthesis, easily accessible intermediates of medium stability are most helpful. [Pg.161]

Polymer compositions containing pentaerythritol are also used as secondary heat-, light-, and weather-resistant stabilizers with calcium, zinc, or barium salts, usually as the stearate, as the prime stabilizer. The polymers may be in plastic or fiber form (87—89). [Pg.466]

Ultimately, as the stabilization reactions continue, the metallic salts or soaps are depleted and the by-product metal chlorides result. These metal chlorides are potential Lewis acid catalysts and can greatiy accelerate the undesired dehydrochlorination of PVC. Both zinc chloride and cadmium chloride are particularly strong Lewis acids compared to the weakly acidic organotin chlorides and lead chlorides. This significant complication is effectively dealt with in commercial practice by the co-addition of alkaline-earth soaps or salts, such as calcium stearate or barium stearate, ie, by the use of mixed metal stabilizers. [Pg.546]

Stabilization Mechanism. Zinc and cadmium salts react with defect sites on PVC to displace the labHe chloride atoms (32). This reaction ultimately leads to the formation of the respective chloride salts which can be very damaging to the polymer. The role of the calcium and/or barium carboxylate is to react with the newly formed zinc—chlorine or cadmium—chlorine bonds by exchanging ligands (33). In effect, this regenerates the active zinc or cadmium stabilizer and delays the formation of significant concentrations of strong Lewis acids. [Pg.549]

Typically, soHd stabilizers utilize natural saturated fatty acid ligands with chain lengths of Cg—C g. Ziac stearate [557-05-1/, ziac neodecanoate [27253-29-8] calcium stearate [1592-23-0] barium stearate [6865-35-6] and cadmium laurate [2605-44-9] are some examples. To complete the package, the soHd products also contain other soHd additives such as polyols, antioxidants, and lubricants. Liquid stabilizers can make use of metal soaps of oleic acid, tall oil acids, 2-ethyl-hexanoic acid, octylphenol, and nonylphenol. Barium bis(nonylphenate) [41157-58-8] ziac 2-ethyIhexanoate [136-53-8], cadmium 2-ethyIhexanoate [2420-98-6], and overbased barium tallate [68855-79-8] are normally used ia the Hquid formulations along with solubilizers such as plasticizers, phosphites, and/or epoxidized oils. The majority of the Hquid barium—cadmium formulations rely on barium nonylphenate as the source of that metal. There are even some mixed metal stabilizers suppHed as pastes. The U.S. FDA approved calcium—zinc stabilizers are good examples because they contain a mixture of calcium stearate and ziac stearate suspended ia epoxidized soya oil. Table 4 shows examples of typical mixed metal stabilizers. [Pg.550]

Economics. As with the alkyl tin stabilizers, the market pricing of the mixed metal stabilizers tend to be directed by the particular appHcation. The calcium—zinc and barium—cadmium packages are typically used at 2.0—4.0 parts per hundred of PVC resin (phr) in the formulation. These completely formulated products are sold for 2.50— 4.40/kg for the Hquid products and 3.20— 6.50/kg for the soHds and pastes. The higher efficiency products aimed at rigid appHcations tend toward the higher end of the cost range. [Pg.551]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

Suitable catalysts include the hydroxides of sodium (119), potassium (76,120), calcium (121—125), and barium (126—130). Many of these catalysts are susceptible to alkali dissolution by both acetone and DAA and yield a cmde product that contains acetone, DAA, and traces of catalyst. To stabilize DAA the solution is first neutralized with phosphoric acid (131) or dibasic acid (132). Recycled acetone can then be stripped overhead under vacuum conditions, and DAA further purified by vacuum topping and tailing. Commercial catalysts generally have a life of about one year and can be reactivated by washing with hot water and acetone (133). It is reported (134) that the addition of 0.2—2 wt % methanol, ethanol, or 2-propanol to a calcium hydroxide catalyst helps prevent catalyst aging. Research has reported the use of more mechanically stable anion-exchange resins as catalysts (135—137). The addition of trace methanol to the acetone feed is beneficial for the reaction over anion-exchange resins (138). [Pg.493]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

Antimony tris(isooctylthioglycolate) has found use in pipe formulations at low levels. Its disadvantage is that it cross-stains with sulfide-based tin stabilizers (122). Barium—zinc stabilizers have found use in plasticized compounds, replacing barium—cadmium stabilizers. These are used in mol dings, profiles, and wire coatings. Cadmium use has decreased because of environmental concerns surrounding certain heavy metals. [Pg.503]

Many stabilizers require costabilizers. Several organic costabilizers are quite useful with barium—zinc and calcium—zinc stabilizers, eg, P-diketones, epoxies, organophosphites, hindered phenols, and polyols (122). [Pg.503]

Plastics and Synthetic Products. To prevent degradation of plastics at elevated processing temperatures, it is necessary to use suitable heat stabilizers. Eor example, flexible poly(vinyl chloride) (PVC) manifests uncontroUed color development in the absence of stabilizers. Accordingly, cadmium salts of organic acids are typically used in a synergistic combination with corresponding barium salts, in about a 1 3 cadmium barium ratio, to provide a cost-competitive heat stabilizer for flexible PVC. [Pg.388]

Neodecanoic acid is also used as the carrier for metals in poly(vinyl chloride) heat stabilizers (qv). Metals used in this appHcation include barium, cadmium, and zinc. Tin as the neodecanoate salt has also been claimed as a heat stabilizer for maleic anhydride (97). [Pg.106]

Mention has already been made of epoxide stabilisers. They are of two classes and are rarely used alone. The first class are the epoxidised oils, which are commonly employed in conjunction with the cadmium-barium systems. The second class are the conventional bis-phenol A epoxide resins (see Chapter 22). Although rarely employed alone, used in conjunction with a trace of zinc octoate (2 parts resin, 0.1 part octoate) compounds may be produced with very good heat stability. [Pg.329]


See other pages where Barium, stabilizers is mentioned: [Pg.313]    [Pg.3475]    [Pg.39]    [Pg.267]    [Pg.401]    [Pg.213]    [Pg.313]    [Pg.3475]    [Pg.39]    [Pg.267]    [Pg.401]    [Pg.213]    [Pg.52]    [Pg.90]    [Pg.311]    [Pg.420]    [Pg.545]    [Pg.546]    [Pg.549]    [Pg.549]    [Pg.550]    [Pg.550]    [Pg.550]    [Pg.551]    [Pg.548]    [Pg.68]    [Pg.347]    [Pg.541]    [Pg.541]    [Pg.438]    [Pg.480]    [Pg.334]    [Pg.397]    [Pg.217]    [Pg.557]    [Pg.503]    [Pg.328]    [Pg.372]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Barium carbonate, thermal stability

Barium stability constant

© 2024 chempedia.info