Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic emission spectroscopy standardizing method

In the inductively coupled plasma atomic emission spectroscopy (ICPAES) method (ASTM DD 5600), a sample of petroleum coke is ashed at 700°C (1292°F) and the ash is fused with lithium borate. The melt is dissolved in dilute hydrochloric acid, and the resulting solution is analyzed by inductively coupled plasma atomic emission spectroscopy using aqueous calibration standards. Because of the need to fuse the ash with lithium borate or other suitable salt, the fusibility of ash may need attention (ASTM D1857). [Pg.301]

Instrumental Quantitative Analysis. Methods such as x-ray spectroscopy, oaes, and naa do not necessarily require pretreatment of samples to soluble forms. Only reUable and verified standards are needed. Other instmmental methods that can be used to determine a wide range of chromium concentrations are atomic absorption spectroscopy (aas), flame photometry, icap-aes, and direct current plasma—atomic emission spectroscopy (dcp-aes). These methods caimot distinguish the oxidation states of chromium, and speciation at trace levels usually requires a previous wet-chemical separation. However, the instmmental methods are preferred over (3)-diphenylcarbazide for trace chromium concentrations, because of the difficulty of oxidizing very small quantities of Cr(III). [Pg.141]

Nickel is normally present at very low levels in biological samples. To determine trace nickel levels in these samples accurately, sensitive and selective methods are required. Atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without preconcentration or separation steps, are the most common methods. These methods have been adopted in standard procedures by EPA, NIOSH, lARC, and the International Union of Pure and Applied... [Pg.207]

S. Euan, H. Pang and R. S. Houk, Application of generalized standard additions method to inductively coupled plasma atomic emission spectroscopy with an echelle spectrometer and segmented-array charge-coupled detectors, Spectrochim. Acta, Part B, 50(8), 1995, 791-801. [Pg.242]

Many metal analyses are carried out using atomic spectroscopic methods such as flame or graphite furnace atomic absorption or inductively coupled plasma atomic emission spectroscopy (ICP-AES). These methods commonly require the sample to be presented as a dilute aqueous solution, usually in acid. ICP-mass spectrometry requires similar preparation. Other samples may be analyzed in solid form. For x-ray fluorescence, the solid sample may require dilution with a solid buffer material to produce less variation between samples and standards, reducing matrix effects. A solid sample is also preferred for neutron activation analyses and may be obtained from dilute aqueous samples by precipitation methods. [Pg.229]

The analytical application of atomic-absorption or atomic-emission spectroscopy generally involves obtaining the sample in an appropriate solution for measurement and calibrating the instrument properly. Commonly used methods for different materials are described below. Frequently, a releasing agent will have to be added, or a solvent extraction will be required to concentrate the element and increase the sensitivity. Standards should be treated in a similar manner. [Pg.284]

A serum sample is analyzed for lithium by atomic-emission spectroscopy using the method of standard additions. Three... [Pg.293]

Because many elements have several strong emission Hnes, AES can be regarded as a multivariate technique per se. Traditionally, for quantitative analysis in atomic emission spectroscopy, a single strong spectral line is chosen, based upon the criteria of Hne sensitivity and freedom of spectral interferences. Many univariate attempts have been made to compensate spectral interferences by standard addition, matrix matching, or interelement correction factors. However, all univariate methods suffer from serious limitations in a complex and Hne-rich matrix. [Pg.489]

The predorninant method for the analysis of alurninum-base alloys is spark source emission spectroscopy. SoHd metal samples are sparked direcdy, simultaneously eroding the metal surface, vaporizing the metal, and exciting the atomic vapor to emit light ia proportion to the amount of material present. Standard spark emission analytical techniques are described in ASTM ElOl, E607, E1251 and E716 (36). A wide variety of weU-characterized soHd reference materials are available from major aluminum producers for instmment caUbration. [Pg.105]

Investigation of atomic spectra yields atomic energy levels. An important chemical application of atomic spectroscopy is in elemental analysis. Atomic absorption spectroscopy and emission spectroscopy are used for rapid, accurate quantitative analysis of most metals and some nonmetals, and have replaced the older, wet methods of analysis in many applications. One compares the intensity of a spectral line of the element being analyzed with a standard line of known intensity. In atomic absorption spectroscopy, a flame is used to vaporize the sample in emission spectroscopy, one passes a powerful electric discharge through the sample or uses a flame to produce the spectrum. Atomic spectroscopy is used clinically in the determination of Ca, Mg, K, Na, and Pb in blood samples. For details, see Robinson. [Pg.70]

The method of standard additions is widely used in atomic spectroscopy (e.g. determination of Ca2+ ions in serum by atomic emission spectrophotometry) and, since several aliquots of sample are analysed to produce the calibration graph, should increase the accuracy and precision of the assay... [Pg.177]

Emission spectroscopy is widely used for both qualitative and quantitative analysis. The high sensitivity and the possible simultaneous excitation of as many as 72 elements, notably metals and metalloids, makes emission spectroscopy especially suited for rapid survey analysis of the elemental content in small samples at the level of 10 /ug/g or less. With control over excitation conditions to maintain constant and reliable atomization and excitation, the spectral line intensities can be used for quantitatively determining concentrations. An analytical curve must be constructed with known standards, and often the ratio of analyte intensity to the intensity of a second element contained in, or added to, the sample (the internal-standard method) is used to improve the precision of quantitative analyses. Preparation of standards for arc and spark techniques requires considerable care to match chemical and physical forms to the sample this is not commonly required for ICP discharge. [Pg.313]

The comparison of detection limits Is a fundamental part of many decision-making processes for the analytical chemist. Despite numerous efforts to standardize methodology for the calculation and reporting of detection limits, there is still a wide divergence In the way they appear in the literature. This paper discusses valid and invalid methods to calculate, report, and compare detection limits using atomic spectroscopic techniques. Noises which limit detection are discussed for analytical methods such as plasma emission spectroscopy, atomic absorption spectroscopy and laser excited atomic fluorescence spectroscopy. [Pg.109]

Because of its extraordinary high sensitivity and specificity mass spectrometry has become a standard tool besides other powerful analytical methods for the trace analysis of metals, such as emission spectroscopy, atomic absorption spectroscopy, neutron activation analysis or electrochemical mediods. [Pg.3]

As mentioned in the introduction to this chapter, visible/UV Fourier transform instruments are still found mainly as unique, one-of-a-kind instruments in a few spectroscopy laboratories. The research topics being pursued with these Fourier transform instruments include atomic spectrochemical measurements, atomic and molecular emission spectroscopy from hollow cathode discharges, and molecular absorption spectroscopy for accurate frequency standards and molecular constants. In each of these research efforts, the Fourier transform method has proven useful. In part, the success of this method is derived from the fundamental advantage originally stated by Jacquinot, and to some extend from the advantage stated by Fellgett. [Pg.449]

FIGURE 9-19. Standard addition method for the determination of the concentration of an unknown. [From W. G. Schrenk, in Flame Emission and Atomic Absorption Spectroscopy, Vol. 2, Edited by J. A. Dean and T. C. Rains, Marcel Dekker, New York (1971), Chapter 12. Used by permission of Marcel Dekker Inc.]... [Pg.241]

Several different methods have been utilized for measuring iron in these biological samples. However, spectrophotometry is the most widely used because it does not require unusual equipment and is readily amenable to automation. Atomic absorption spectrometry is effectively used for tissue and urine analyses [33-35], but unreliable results are obtained with serum due to sensitivity limitations as well as matrix and hemoglobin interferences [35]. Other methods utilizing inductively coupled plasma emission spectroscopy [36], coulometry [37], proton induced X-ray emission [38], neutron activation analysis [39], radiative energy attenuation [40], and radiometry with Fe [41] have been described but, with the exception of coulometry, have not become standard procedures in the clinical chemistry laboratory, inasmuch as sophisticated and expensive instrumentation is required in some instances. However, some of them, e.g., neutron activation, may be the method of choice for definitive accurate analysis. [Pg.417]


See other pages where Atomic emission spectroscopy standardizing method is mentioned: [Pg.443]    [Pg.1086]    [Pg.544]    [Pg.149]    [Pg.447]    [Pg.323]    [Pg.177]    [Pg.468]    [Pg.78]    [Pg.468]    [Pg.177]    [Pg.102]    [Pg.415]    [Pg.130]    [Pg.128]    [Pg.30]    [Pg.224]    [Pg.2]    [Pg.134]    [Pg.328]    [Pg.133]    [Pg.1050]    [Pg.1242]    [Pg.1555]    [Pg.1573]    [Pg.127]    [Pg.134]    [Pg.214]    [Pg.76]    [Pg.35]    [Pg.17]   
See also in sourсe #XX -- [ Pg.438 , Pg.439 ]




SEARCH



Atomic emission

Atomic emission spectroscopy

Atomic spectroscopy

Atomic standard

Atomization methods

Atoms methods

Emission spectroscopy)

Emission standards

Method standardization

Spectroscopy method

Standard method

Standardizing method

© 2024 chempedia.info