Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications colour analysis

Murexide forms complexes with many metal ions only those with Cu, Ni, Co, Ca and the lanthanides are sufficiently stable to find application in analysis. Their colours in alkaline solution are orange (copper), yellow (nickel and cobalt), and red (calcium) the colours vary somewhat with the pH of the solution. [Pg.316]

The adsorptive properties of colloids find some application in analysis, e.g. in the removal of phosphates by tin(IV) hydroxide oxide in the presence of nitric acid (Section V.13) and in the formation of coloured lakes from colloidal metallic hydroxides and certain soluble dyes (see Section III.23 and III.35 for aluminium and magnesium respectively). There is, however, some evidence... [Pg.88]

Development of extraction-free photometric procedures for the determination of traces of metals for which hygienic and environmental regulations have been established is an urgent problem. For solution of this problem we used as an organic reagent l-(2- pyridylazo)-naphtol-2 (PAN) which forms intensely coloured complex compounds with many metals and is frequently used for their extraction-photometric determination however these procedures did not find wide application in water analysis due to lack of selectivity and necessity of using organic solvents. [Pg.199]

In cases where it proves impossible to find a suitable indicator (and this will occur when dealing with strongly coloured solutions) then titration may be possible by an electrometric method such as conductimetric, potentiometric or amperometric titration see Chapters 13-16. In some instances, spectrophotometric titration (Chapter 17) may be feasible. It should also be noted that ifit is possible to work in a non-aqueous solution rather than in water, then acidic and basic properties may be altered according to the solvent chosen, and titrations which are difficult in aqueous solution may then become easy to perform. This procedure is widely used for the analysis of organic materials but is of very limited application with inorganic substances and is discussed in Sections 10.19-10.21. [Pg.281]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Identification of dyes on dyed textiles is traditionally carried out by destructive techniques [493], TLC is an outstanding technique for identification of extracted dyestuffs and examination of inks. Figure 4.9 shows HPTLC/SERRS analysis of acridine orange [492], Wright et al. [494] have described a simple and rapid TLC-videodensitometric method for in situ quantification of lower halogenated subsidiary colours (LHSC) in multiple dye samples. The results obtained by this method were compared with those obtained by an indirect TLC-spectrophotometric method and those from HPLC. The total time for the TLC-videodensitometric assay of five standards and four samples applied to each plate was less than 45 min. The method is applicable for use in routine batch-certification analysis. Loger et al. [495,496] have chromatographed 19 basic dyes for PAN fibres on alumina on thin-layer with ethanol-water (5 2) and another 11 dyes on silica gel G with pyridine-water... [Pg.229]

Applications Applications of UV/VIS spectrophotometry can be found in the areas of extraction monitoring and control, migration and blooming, polymer impregnation, in-polymer analysis, polymer melts, polymer-bound additives, purity determinations, colour body analysis and microscopy. Most samples measured with UV/VIS spectroscopy are in solution. However, in comparison to IR spectroscopy additive analysis in the UV/VIS range plays only a minor role as only a limited class of compounds exhibits specific absorption bands in the UV range with an intensity proportional to the additive concentration. Characteristic UV absorption bands of various common polymer additives are given in Scheirs [24],... [Pg.307]

Phenolic antioxidants in rubber extracts were determined indirectly photometrically after reaction with Fe(III) salts which form a red Fe(II)-dipyridyl compound. The method was applicable to Vulkanox BKF and Vulkanox KB [52]. Similarly, aromatic amines (Vulkanox PBN, 4020, DDA, 4010 NA) were determined photometrically after coupling with Echtrotsalz GG (4-nitrobenzdiazonium fluoroborate). For qualitative analysis of vulcanisation accelerators in extracts of rubbers and elastomers colour reactions with dithio-carbamates (for Vulkacit P, ZP, L, LDA, LDB, WL), thiuram derivatives (for Vulkacit I), zinc 2-mercaptobenzthiazol (for Vulkacit ZM, DM, F, AZ, CZ, MOZ, DZ) and hexamethylene tetramine (for Vulkacit H30), were mentioned as well as PC and TLC analyses (according to DIN 53622) followed by IR identification [52]. 8-Hydroquinoline extraction of interference ions and alizarin-La3+ complexation were utilised for the spectrophotometric determination of fluorine in silica used as an antistatic agent in PE [74], Also Polygard (trisnonylphenylphosphite) in styrene-butadienes has been determined by colorimetric methods [75,76], Most procedures are fairly dated for more detailed descriptions see references [25,42,44],... [Pg.311]

Applications The potential of a variety of direct solid sampling methods for in-polymer additive analysis by GC has been reviewed and critically evaluated, in particular, static and dynamic headspace, solid-phase microextraction and thermal desorption [33]. It has been reported that many more products were identified after SPME-GC-MS than after DHS-GC-MS [35], Off-line use of an amino SPE cartridge for sample cleanup and enrichment, followed by TLC, has allowed detection of 11 synthetic colours in beverage products at sub-ppm level [36], SFE-TLC was also used for the analysis of a vitamin oil mixture [16]. [Pg.433]

Applications HS-GC-MS was used to identify odour in a manufacturing plant as an acetal [308] and to analyse a colour body problem [308a]. HS-GC-MS and GC-MS were both used for failure analysis blister space... [Pg.470]

Elaboration of the method for the identification of colour compounds by RPLC MS should comprise four steps (1) spectral characterization of reference materials (standards) and subsequent optimization of detection parameters, as well as those of their chromatographic separation (2) analysis of natural dyestuffs used as colouring materials in historical objects (3) analysis of model samples (dyed fibres, paintings) prepared according to old recipes (4) application of the acquired knowledge to identification of colourants present in historical objects. [Pg.366]

In the contemporary investigation of artworks and especially in the identification of natural organic dyestuffs the applicability of HPLC MS cannot be questioned. This technique allows recognition of almost all common colourants in one run , which decreases the probability of losing specific information (Table 13.3). In comparison with GC-MS, HPLC MS has wider application, as it is not limited by the presence of polar and nonvolatile compounds, and therefore it usually does not require the derivatization step. The number of published papers, which has doubled in the last 3 years in comparison with the period 2000 2004, proves that HPLC-MS performs a pivotal role in the analysis of the colourants discussed. [Pg.383]

The technique is used predominantly for the isolation of a single chemical species prior to a determination and to a lesser extent as a method of concentrating trace quantities. The most widespread application is in the determination of metals as minor and trace constituents in a variety of inorganic and organic materials, e g. the selective extraction and spectrometric determination of metals as coloured complexes in the analysis of metallurgical and geological samples as well as for petroleum products, foodstuffs, plant and animal tissue and body fluids. [Pg.69]

Numerous CE separations have been published for synthetic colours, sweeteners and preservatives (Frazier et al., 2000a Sadecka and Polonsky, 2000 Frazier et al., 2000b). A rapid CZE separation with diode array detection for six common synthetic food dyes in beverages, jellies and symps was described by Perez-Urquiza and Beltran (2000). Kuo et al. (1998) separated eight colours within 10 minutes using a pH 9.5 borax-NaOH buffer containing 5 mM /3-cyclodextrin. This latter method was suitable for separation of synthetic food colours in ice-cream bars and fmit soda drinks with very limited sample preparation. However the procedure was not validated for quantitative analysis. A review of natural colours and pigments analysis was made by Watanabe and Terabe (2000). Da Costa et al. (2000) reviewed the analysis of anthocyanin colours by CE and HPLC but concluded that the latter technique is more robust and applicable to complex sample types. Caramel type IV in soft drinks was identified and quantified by CE (Royle et al., 1998). [Pg.124]

The legal or illegal application of synthetic dyes in foods and food products increases consumer acceptance, and consequently, the profit of the producer. As a considerable quantity of foods and food products contain dyes, their determination is of considerable importance. Electrophoretic techniques have been frequently employed for dye analysis. Thus, micellar electrokinetic capillary chromatography has also been employed for the determination of synthetic colours in soft drinks and confectioneries [183],... [Pg.516]

The use of electrophotometry requires a sample preparation with a coloured solution. Together with an electrophotometer for alkaloid analysis, a constant light intensity and filter, as well as an electronic installation for measurement, must be used. The electrophotometry method is an application of both calorimetry and photometry in the same analysis. [Pg.132]

In 1935, the Committee was renamed the Analytical Methods Committee (AMC) but the main analytical work was carried out by sub-committees composed of analysts with specialised knowledge of the particular application area. The earliest topics selected for study were milk products, essential oils, soap and the determination of metals in food colourants. Later applications included the determination of fluorine, crude fibre, total solids in tomato products, trade effluents and trace elements, and vitamins in animal feeding stuffs. These later topics led to the publication of standard methods in a separate booklet. All standard and recommended methods were collated and published in a volume entitled Bibliography of Standard, Tentative and Recommended or Recognised Methods of Analysis in 1951. This bibliography was expanded to include full details of the method under the title Official, Standardised and Recommended Methods of Analysis in 1976 with a second edition in 1983 and a third edition in 1994. [Pg.1]

This chapter is concerned with dyes and pigments which are complexes of azo, formazan, azomethine, nitroso, anthraquinone and phthalocyanine ligands. Many of these compounds find important applications in other fields, particularly colour photography and reprography, analysis, catalysis, biology, and some modem high technology industries such as electronics. These applications are described in other chapters of this volume. [Pg.40]

The techniques employed in qualitative analysis vary in their complexity, depending on the nature of the sample under investigation. In some cases it is only necessary to confirm the presence of certain elements or groups for which specific chemical tests, or spot tests, applicable directly to the sample, may be available. More often, the sample is a complex mixture, and a systematic analysis must be made in order that all the component parts may be identified. Often, the first simple stages of qualitative analysis require no apparatus at all. Things like colour and smell can be observed without any need for apparatus. [Pg.272]

FIA systems are used to investigate the kinetics of homogeneous chemical reactions and for the analytical determination of many components by means of spectrophotometric detection, amongst other applications. In the latter method, a certain concentration of reagent (component forming a coloured complex with the component to be determined) is added (injection), to a constant liquid flow of the solution in which the component to be determined is situated (flow).The resulting solution subsequently passes a reaction chamber, after which detection occurs by means of a spectrophotometer (analysis). [Pg.153]


See other pages where Applications colour analysis is mentioned: [Pg.379]    [Pg.88]    [Pg.110]    [Pg.195]    [Pg.157]    [Pg.20]    [Pg.330]    [Pg.343]    [Pg.157]    [Pg.35]    [Pg.74]    [Pg.228]    [Pg.604]    [Pg.353]    [Pg.3]    [Pg.377]    [Pg.2]    [Pg.123]    [Pg.63]    [Pg.239]    [Pg.33]    [Pg.88]    [Pg.252]    [Pg.157]    [Pg.25]    [Pg.377]    [Pg.624]    [Pg.33]    [Pg.141]    [Pg.141]   
See also in sourсe #XX -- [ Pg.221 , Pg.222 ]




SEARCH



Analysis, applications

Colour analysis

© 2024 chempedia.info