Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical procedures analysis

Charcoal, Analytical Procedures. Analysis of wood charcoal, covering moisture, volatile matter and ash is given in ASTMStds(196l),... [Pg.545]

The choice between X-ray fluorescence and the two other methods will be guided by the concentration levels and by the duration of the analytical procedure X-ray fluorescence is usually less sensitive than atomic absorption, but, at least for petroleum products, it requires less preparation after obtaining the calibration curve. Table 2.4 shows the detectable limits and accuracies of the three methods given above for the most commonly analyzed metals in petroleum products. For atomic absorption and plasma, the figures are given for analysis in an organic medium without mineralization. [Pg.38]

Several types of reactions are commonly used in analytical procedures, either in preparing samples for analysis or during the analysis itself. The most important of these are precipitation reactions, acid-base reactions, complexation reactions, and oxidation-reduction reactions. In this section we review these reactions and their equilibrium constant expressions. [Pg.139]

Two frequently encountered analytical problems are (1) the presence of matrix components interfering with the analysis of the analyte and (2) the presence of analytes at concentrations too small to analyze accurately. We have seen how a separation can be used to solve the former problem. Interestingly, separation techniques can often be used to solve the second problem as well. For separations in which a complete recovery of the analyte is desired, it may be possible to transfer the analyte in a manner that increases its concentration. This step in an analytical procedure is known as a preconcentration. [Pg.223]

An emphasis on critical thinking. Critical thinking is encouraged through problems in which students are asked to explain why certain steps in an analytical procedure are included, or to determine the effect of an experimental error on the results of an analysis. [Pg.814]

Although isotope-dilution analysis can be very accurate, a number of precautions need to be taken. Some of these are obvious ones that any analytical procedure demands. For example, analyte preparation for both spiked and unspiked sample must be as nearly identical as possible the spike also must be intimately mixed with the sample before analysis so there is no differential effect on the subsequent isotope ration measurements. The last requirement sometimes requires special chemical treatment to ensure that the spike element and the sample element are in the same chemical state before analysis. However, once procedures have been set in place, the highly sensitive isotope-dilution analysis gives excellent precision and accuracy for the estimation of several elements at the same time or just one element. [Pg.366]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

Analysis. Lithium can be detected by the strong orange-red emission of light in a flame. Emission spectroscopy allows very accurate determination of lithium and is the most commonly used analytical procedure. The red emission line at 670.8 nm is usually used for analytical determinations although the orange emission line at 610.3 nm is also strong. Numerous other methods for lithium determinations have been reviewed (49,50). [Pg.224]

Ozone can be analyzed by titrimetry, direct and colorimetric spectrometry, amperometry, oxidation—reduction potential (ORP), chemiluminescence, calorimetry, thermal conductivity, and isothermal pressure change on decomposition. The last three methods ate not frequently employed. Proper measurement of ozone in water requites an awareness of its reactivity, instabiUty, volatility, and the potential effect of interfering substances. To eliminate interferences, ozone sometimes is sparged out of solution by using an inert gas for analysis in the gas phase or on reabsorption in a clean solution. Historically, the most common analytical procedure has been the iodometric method in which gaseous ozone is absorbed by aqueous KI. [Pg.503]

The ease of hydrolysis of metal alkoxides makes metal analysis a comparatively simple task. In many cases, the metal may be estimated by hydrolysis of a sample in a cmcible, and ignition to the metal oxide. Alternatively, the metal ion may be brought into solution by hydrolysis of a sample with dilute acid, followed by a standard analytical procedure for a solution of that particular metal. If the alcohol Hberated during the hydrolysis is likely to cause interference, it may be distilled from the solution by boiling. [Pg.28]

Measurement and specification of nitrates or other nitrogen oxide compounds in sulfuric acid is a complex subject. The difficulty occurs because nitrogen oxides are usually present both as nitrous and nitric compounds, predominantiy in the nitrous form. Hence, analytical procedures specific for nitrates only do not give a complete analysis. [Pg.192]

Descriptions of sulfuric acid analytical procedures not specified by ASTM are available (32,152). Federal specifications also describe the requited method of analysis. Concentrations of 78 wt % and 93 wt % H2SO4 are commonly measured indirectly by determining specific gravity. Higher acid concentrations are normally determined by titration with a base, or by sonic velocity or other physical property for plant control. Sonic velocity has been found to be quite accurate for strength analysis of both filming and nonfuming acid. [Pg.192]

Analysis. Many analytical procedures calling for determination of molecular stmcture are aided by crystallization or requite that the unknown compound be crystalline. Methodologies coupling crystalliza tion and analytical procedures will not be covered here (see X-RAY TECHNOLOGY)... [Pg.338]

Colorimetric methods have been successfully used for determining trace amounts of ethanol. Ammonium hexanitratocerate(IV) has been used as a reagent (262) and for continuous automatic analysis. Alcohols form colored complexes with 8-hydroxyquinoline and vanadic compounds. The absorbance of these complexes, measured at 390 p.m has been used to provide an analytical procedure (263). [Pg.413]

The liquid was applied and dried on cellulose filter (diameter 25 mm). In the present work as an analytical signal we took the relative intensity of analytical lines. This approach reduces non-homogeneity and inequality of a probe. Influence of filter type and sample mass on features of the procedure was studied. The dependence of analytical lines intensity from probe mass was linear for most of above listed elements except Ca presented in most types of filter paper. The relative intensities (reduced to one of the analysis element) was constant or dependent from mass was weak in determined limits. This fact allows to exclude mass control in sample pretreatment. For Ca this dependence was non-linear, therefore, it is necessary to correct analytical signal. Analysis of thin layer is characterized by minimal influence of elements hence, the relative intensity explicitly determines the relative concentration. As reference sample we used solid synthetic samples with unlimited lifetime. [Pg.370]

Accurate GDMS analysis has required the development of analytical procedures appropriate to the accuracy and detection limits required and specific to the mate-... [Pg.612]

The minimum air sample (litres) that will provide enough of the substance for the most accurate analysis at the TLV concentrations using the analytical procedures listed. [Pg.385]

Ultrafiltration utilizes membrane filters with small pore sizes ranging from O.OlS t to in order to collect small particles, to separate small particle sizes, or to obtain particle-free solutions for a variety of applications. Membrane filters are characterized by a smallness and uniformity of pore size difficult to achieve with cellulosic filters. They are further characterized by thinness, strength, flexibility, low absorption and adsorption, and a flat surface texture. These properties are useful for a variety of analytical procedures. In the analytical laboratory, ultrafiltration is especially useful for gravimetric analysis, optical microscopy, and X-ray fluorescence studies. [Pg.347]

In any form of analysis it is important to determine the integrity of the system and confirm that artefacts are not produced as a by-product of the analytical procedure. This is particularly important in enantiomeric analysis, where problems such as the degradation of lactone and furanon species in transfer lines has been reported (40). As chromatography unions, injectors, splitters, etc. become more stable and greater degrees of deactivation are possible, problems of this kind will hopefully be reduced. Some species, however, such as methyl butenol generated from natural emissions, still remain a problem, undergoing dehydration to yield isoprene on some GC columns. [Pg.65]

Methods developed for on-line technological control have to be tested for the variation of the product composition due to process variations. However, if rugged analytical procedures are developed these multidimensional methods may only require minimal attention during on-line operation. Multidimensional chromatography for the analysis of complex polymer and industrial samples offers chromatogra-phers high productivity and efficiency and is an excellent alternative to off-line methods. [Pg.331]

The main aims in environmental analysis are sensitivity (due to the low concentration of microcontaminants to be determined), selectivity (due to the complexity of the sample) and automation of analysis (to increase the throughput in control analysis). These three aims are achieved by multidimensional chromatography sensitivity is enhanced by large-volume injection techniques combined with peak compression, selectivity is obviously enhanced if one uses two separations with different selectivi-ties instead of one, while on-line techniques reduce the number of manual operations in the analytical procedure. [Pg.334]

Rhodium-platinum alloys containing up to 40% Rh are used in the form of wire or ribbon in electrical resistance windings for furnaces to operate continuously at temperatures up to 1 750°C. Such windings are usually completely embedded in a layer of high-grade alumina cement or flame-sprayed alumina to prevent volatilisation losses from the metal due to the free circulation of air over its surface. Furnaces of this type are widely employed for steel analysis, ash fusions and other high-temperature analytical procedures. [Pg.941]

The function of the analyst is to obtain a result as near to the true value as possible by the correct application of the analytical procedure employed. The level of confidence that the analyst may enjoy in his results will be very small unless he has knowledge of the accuracy and precision of the method used as well as being aware of the sources of error which may be introduced. Quantitative analysis is not simply a case of taking a sample, carrying out a single determination and then claiming that the value obtained is irrefutable. It also requires a sound knowledge of the chemistry involved, of the possibilities of interferences from other ions, elements and compounds as well as of the statistical distribution of values. The purpose of this chapter is to explain some of the terms employed and to outline the statistical procedures which may be applied to the analytical results. [Pg.127]

The errors arising in sampling, particularly in the case of heterogeneous solids, may be the most important source of uncertainty in the subsequent analysis of the material. If we represent the standard deviation of the sampling operation (the sampling error) by ss and the standard deviation of the analytical procedures (the analytical error) by sA, then the overall standard deviation sT (the total error) is given by... [Pg.151]

Stripping. Stripping is the removal of the extracted solute from the organic phase for further preparation for the detailed analysis. In many analytical procedures involving an extraction process, however, the concentration of the desired solute is determined directly in the organic phase. [Pg.173]

Analytical procedures sensitive to 2 ppm for styrene and 0.05 ppm or less for other items were used for examining the extracts. Even under these exaggerated exposure conditions no detectable levels of the monomers, of the polymer, or of other potential residuals were observed. The materials are truly non-food-additive by the FDA definitions. Hydrogen cyanide was included in the list of substances for analysis since it can be present at low levels in commercial acrylonitrile monomer, and it has been reported as a thermal decomposition product of acrylonitrile polymers. As shown here, it is not detectable in extracts by tests sensitive to... [Pg.77]

Oleum. Fuming sulfuric acid a soln of sulfur trioxide in sulfuric acid used as a sulfating and sulfonating agent. See under Acidity in Acids in Vol 1, A88-R to A90-R Acids Used in Manufacture and Analysis of Explosives in Vol 1, A93-L to A93-R and under Nitration in this Vol For analytical procedures, see under Glass Bulbs for Weighing Acids in Vol 6, G78-R to G79-R... [Pg.423]


See other pages where Analytical procedures analysis is mentioned: [Pg.85]    [Pg.85]    [Pg.1828]    [Pg.211]    [Pg.398]    [Pg.543]    [Pg.486]    [Pg.366]    [Pg.369]    [Pg.225]    [Pg.88]    [Pg.157]    [Pg.324]    [Pg.298]    [Pg.217]    [Pg.325]    [Pg.163]    [Pg.583]    [Pg.105]    [Pg.139]    [Pg.290]    [Pg.65]    [Pg.378]    [Pg.518]   


SEARCH



Analysis procedures

Analytic Procedures

Analytical Analyses

Analytical procedures

© 2024 chempedia.info