Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chlorides physical properties

Chloroacetyl chloride [79-04-9] (CICH2COCI) is the corresponding acid chloride of chloroacetic acid (see Acetyl chloride). Physical properties include mol wt 112.94, C2H2CI2O, mp —21.8 C, bp 106°C, vapor pressure 3.3 kPa (25 mm Hg) at 25°C, 12 kPa (90 mm Hg) at 50°C, and density 1.4202 g/mL and refractive index 1.4530, both at 20°C. Chloroacetyl chloride has a sharp, pungent, irritating odor. It is miscible with acetone and bensene and is initially insoluble in water. A slow reaction at the water—chloroactyl chloride interface, however, produces chloroacetic acid. When sufficient acid is formed to solubilize the two phases, a violent reaction forming chloroacetic acid and HCl occurs. [Pg.89]

Nomex, another aromatic polyamide (compare aramid), is prepared by polymerization of 1,3-benzenediamine and the diacid chloride of 1,3-benzenedicarboxylic acid. The physical properties of the polymer make it suitable for high-strength, high-temperature applications such as parachute cords and jet aircraft tires. Draw a structural formula for the repeating unit of Nomex. [Pg.1244]

The physical properties of a number of aliphatic acid chlorides are collected in Table 111,88. [Pg.369]

The physical properties of a few tjrpical acid chlorides of aromatic acids are collected in Table IV, 18 7). Some acid anhydrides are also included in this Table (compare Section 111,94). [Pg.795]

Lead Chloride. Lead dichloride, PbCl2, forms white, orthorhombic needles some physical properties are given in Table 1. Lead chloride is slightly soluble in dilute hydrochloric acid and ammonia and insoluble in alcohol. It is prepared by the reaction of lead monoxide or basic lead carbonate with hydrochloric acid, or by treating a solution of lead acetate with hydrochloric acid and allowing the precipitate to settle. It easily forms basic chlorides, such as PbCl Pb(OH)2 [15887-88 ] which is known as Pattinson s lead white, an artist s pigment. [Pg.68]

Uses. Phthabc anhydride is used mainly in plasticizers, unsaturated polyesters, and alkyd resins (qv). PhthaUc plasticizers consume 54% of the phthahc anhydride in the United States (33). The plasticizers (qv) are used mainly with poly(vinyl chloride) to produce flexible sheet such as wallpaper and upholstery fabric from normally rigid polymers. The plasticizers are of two types diesters of the same monohydric alcohol such as dibutyl phthalate, or mixed esters of two monohydric alcohols. The largest-volume plasticizer is di(2-ethylhexyl) phthalate [117-81-7] which is known commercially as dioctyl phthalate (DOP) and is the base to which other plasticizers are compared. The important phthahc acid esters and thek physical properties are Hsted in Table 12. The demand for phthahc acid in plasticizers is naturally tied to the growth of the flexible poly(vinyl chloride) market which is large and has been growing steadily. [Pg.485]

Derivatives. In general, the esters of terephthaHc acid derived from saturated alcohols undergo the same reactions as dimethyl terephthalate. Some physical properties of six of these esters are Hsted in Table 23. The di- -butyl and di-2-ethyIhexyl esters find use as plasticizers (qv). Terephthaloyl chloride, which is prepared by reaction of terephthaHc acid and thionyl chloride, is used to prepare derivatives of terephthaHc acid. [Pg.492]

Derivatives. The dual functionaUty of trimellitic anhydride makes it possible to react either the anhydride group, the acid group, or both. Derivatives of trimellitic anhydride include ester, acid esters, acid chloride, amides, and amide—imides (136). Trimellitate esters are the most important derivatives, and physical properties of more significant esters are Hsted in Table 34. [Pg.498]

PVC. Poly(vinyl chloride) (PVC), a very versatile polymer, is manufactured by the polymerisation of vinyl chloride monomer, a gaseous substance obtained from the reaction of ethylene with oxygen and hydrochloric acid. In its most basic form, the resin is a relatively hard material that requites the addition of other compounds, commonly plasticisers and stabilisers as well as certain other ingredients, to produce the desired physical properties for roofing use. The membranes come in both reinforced and nonreinforced constmctions, but since the 1980s the direction has been toward offering only reinforced membranes. The membrane thickness typically mns from 0.8—1.5 mm and widths typically in the range of 1.5—4.6 m. [Pg.214]

Sulfosahcyhc acid is prepared by heating 10 parts of sahcyhc acid with 50 parts of concentrated sulfuric acid, by chlorosulfonation of sahcyhc acid and subsequent hydrolysis of the acid chloride, or by sulfonation with hquid sulfur trioxide in tetrachloroethylene. It is used as an intermediate in the production of dyestuffs, grease additives, catalysts, and surfactants. It is also useful as a colorimetric reagent for ferric iron and as a reagent for albumin. Table 9 shows the physical properties of sahcyhc acid derivatives. [Pg.290]

Physical Properties. Sulfuryl chloride [7791-25-5] SO2CI2, is a colorless to light yellow Hquid with a pungent odor. Physical and thermodynamic properties are Hsted ia Table 7. Sulfuryl chloride dissolves sulfur dioxide, bromine, iodine, and ferric chloride. Various quaternary alkyl ammonium salts dissolve ia sulfuryl chloride to produce highly conductive solutions. Sulfuryl chloride is miscible with acetic acid and ether but not with hexane (193,194). [Pg.142]

Because of the presence of an extended polyene chain, the chemical and physical properties of the retinoids and carotenoids are dominated by this feature. Vitamin A and related substances are yellow compounds which are unstable in the presence of oxygen and light. This decay can be accelerated by heat and trace metals. Retinol is stable to base but is subject to acid-cataly2ed dehydration in the presence of dilute acids to yield anhydrovitamin A [1224-18-8] (16). Retro-vitamin A [16729-22-9] (17) is obtained by treatment of retinol in the presence of concentrated hydrobromic acid. In the case of retinoic acid and retinal, reisomerization is possible after conversion to appropriate derivatives such as the acid chloride or the hydroquinone adduct. Table 1 Hsts the physical properties of -carotene [7235-40-7] and vitamin A. [Pg.96]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

Physical properties of hexachloroethane are Hsted in Table 11. Hexachloroethane is thermally cracked in the gaseous phase at 400—500°C to give tetrachloroethylene, carbon tetrachloride, and chlorine (140). The thermal decomposition may occur by means of radical-chain mechanism involving -C,C1 -C1, or CCl radicals. The decomposition is inhibited by traces of nitric oxide. Powdered 2inc reacts violentiy with hexachloroethane in alcohoHc solutions to give the metal chloride and tetrachloroethylene aluminum gives a less violent reaction (141). Hexachloroethane is unreactive with aqueous alkali and acid at moderate temperatures. However, when heated with soHd caustic above 200°C or with alcohoHc alkaHs at 100°C, decomposition to oxaHc acid takes place. [Pg.15]

Y Picoline. Commercially pure y-picoline contains )S-picoline and 2 6-lutidine and sometimes traces of non-basic impurities (aromatic hydrocarbons) which cannot be separated by fractionation. The non-basic impurities are removed by steam distillation of the base in dilute hydrochloric or sulphuric acid solution (for details, see under a Picoline). The impure y-picoline is converted into the zinc chloride complexes of the component bases the 2 6-lutidine - ZnClj complex is the least stable and upon steam distillation of the mixture of addition compounds suspended in water, 2 6-lutidine passes over flrst. The complete separation of the 2 6-lutidine may be detected by a determination of the density and the refractive index of the dry recovered base at varioiu stages of the steam distillation. The physical properties are —... [Pg.178]

Ethers are unaffected by sodium and by acetyl (or benzoyl) chloride. Both the purely aliphatic ethers e.g., di-n-butyl ether (C4H, )30 and the mixed aliphatic - aromatic ethers (e.g., anisole C3HSOCH3) are encountered in Solubility Group V the purely aromatic ethers e.g., diphenyl ether (C,Hj)20 are generally insoluble in concentrated sulphuric acid and are found in Solubility Group VI. The purely aliphatic ethers are very inert and their final identification may, of necessity, depend upon their physical properties (b.p., density and/or refractive index). Ethers do, however, suffer fission when heated with excess of 67 per cent, hydriodic acid, but the reaction is generally only of value for the characterisation of symmetrical ethers (R = R ) ... [Pg.1067]

A development reported recently [519] involves reduction of the cystine disulphide bonds in wool with either thioglycolic acid or tetrakis(hydroxymethyl)phosphonium chloride to form thiol groups, followed by crosslinking with bifunctional reactive dyes. This gave improved insect resistance but had adverse effects on physical properties such as strength, shrinkage and stiffness, thus limiting the potential of the process for commercial use. [Pg.276]

Oleoyl chloride has been prepared by treatment of oleic acid with thionyl chloride,3 phosphorus trichloride or pentachloride, and oxalyl chloride.4 The highest yield (86%) reported was secured by use of oxalyl chloride in carbon tetrachloride, but the more economical phosphorus trichloride gave a yield of 60%. The standard procedures for obtaining aliphatic acid chlorides have been described many times without inclusion of details other than physical properties. Only references to the procedures useful in the laboratory are given. [Pg.36]

U.S. imports for consumption, 4 563t water treatment compound for aquaculture in U.S., 3 213t Calcium chloride dihydrate, physical properties of, 4 5571 Calcium chloride hexahydrate, physical properties of, 4 557t Calcium chloride monohydrate, physical properties of, 4 557t Calcium chloride production, use of aqueous hydrochloric acid in,... [Pg.133]

Dimethylacetamide (DMAc), cellulose solvent (with lithium chloride), 5 384 N, N-Dimethylacetamide (DMAc), 23 703 extractive distillation solvent, 8 802 solvent for cotton, 8 21 N, AA-Dimethylacrylamide (DMA), 20 487 P,P-Dimethyl acrylic acid, physical properties, 5 35t Dimethylallylamine, 2 247... [Pg.272]

Methanesulfonyl chloride, 23 653, 681-683 Methano[60]fullerenes, 12 242 Methanogenic conditions, defined, 3 757t Methanoic acid, physical properties, 5 29t Methanol, 16 299-316. See also Methanol synthesis... [Pg.573]

Salicylic alcohol glucosides, natural, 22 7 Salicyloyl chloride, 22 3 Salicylsalicylic acid, 22 16-17 physical properties of, 22 15t Saligenin, 22 23, 24 Salina salt, 5 788 Saline hydrides, 13 771 Saline solutions... [Pg.817]


See other pages where Acid chlorides physical properties is mentioned: [Pg.70]    [Pg.178]    [Pg.1067]    [Pg.68]    [Pg.419]    [Pg.115]    [Pg.27]    [Pg.85]    [Pg.534]    [Pg.3]    [Pg.426]    [Pg.3]    [Pg.402]    [Pg.259]    [Pg.182]    [Pg.5]    [Pg.98]    [Pg.18]    [Pg.91]    [Pg.175]    [Pg.766]   
See also in sourсe #XX -- [ Pg.659 , Pg.660 ]

See also in sourсe #XX -- [ Pg.659 , Pg.660 ]

See also in sourсe #XX -- [ Pg.834 ]




SEARCH



Acid physical properties

Chlorides properties

Physical properties chloride)

© 2024 chempedia.info