Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diacid chloride

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

A cross-linked and crystalline copoly(ester—imide) containing an alkene function was made by reaction of an unsaturated diacid chloride containing a cychc imido group with ethylene glycol at low temperature (27). [Pg.532]

A polyester backbone with two HFIP groups (12F aromatic polyester of 12F-APE) was derived by the polycondensation of the diacid chloride of 6FDCA with bisphenol AF or bisphenol A under phase-transfer conditions (120). These polymers show complete solubkity in THF, chloroform, ben2ene, DMAC, DMF, and NMP, and form clear, colorless, tough films the inherent viscosity in chloroform at 25°C is 0.8 dL/g. A thermal stabkity of 501°C (10% weight loss in N2) was observed. [Pg.539]

The next approach to incorporate the 12F-diol into a polyurethane matrix was reaction of the y -12F-diol with aUphatic diacid chlorides (where a = 3 or 4) to give low molar mass polyesters (141) ... [Pg.540]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Oxalyl Chloride. This diacid chloride [79-37-8], ClCOCOCl, mol wt 126.9, is produced by the reaction of anhydrous oxaUc acid and phosphoms pentachloride. The compound vigorously reacts with water, alcohols, and amines, and is employed for the synthesis of agrochemicals, pharmaceuticals, and fine chemicals. [Pg.463]

Use of diacid chlorides for acyl chlorides in the latter reaction results in generation of di(diacyl peroxides) (25). [Pg.125]

The yellow members of this pigment class are obtained by coupling a dia2oti2ed aminoben2oic acid with a bisacetoacetaryUde, followed by conversion to a diacid chloride and reaction with a substituted aromatic amine. An example is Pigment Yellow 93 [5580-57-4] (Fig. 2b). [Pg.30]

Because almost any diacid can be leaddy converted to the acid chloride, this reaction is quite versatile and several variations have been developed. In the interfacial polymerization method the reaction occurs at the boundary of two phases one contains a solution of the acid chloride in a water-immiscible solvent and the other is a solution of the diamine in water with an inorganic base and a surfactant (48). In the solution method, only one phase is present, which contains a solution of the diamine and diacid chloride. An organic base is added as an acceptor for the hydrogen chloride produced in the reaction (49). Following any of these methods of preparation, the polymer is exposed to water and the acid chloride end is converted to a carboxyhc acid end. However, it is very difficult to remove all traces of chloride from the polymer, even with repeated washings with a strong base. [Pg.224]

The diacid components for the manufacture of poly(y -phenyleneisophthalamide) and poly(p-phenyleneterephthalamide) are produced by one of two processes. In the first, the diacid chlorides are produced by the oxidation of / -xylene [108-38-3] or -xylene [106-42-3] followed by the reaction of the diacids with phosgene [75-44-5]. In the second, process m- or -xylene reacts with chlorine initiated by ultraviolet light to form the m- or Nhexachloroxylene. This then reacts with the respective aromatic dicarboxyUc acid to form the diacid chloride. [Pg.239]

The aramids are formed in the low temperature reaction, -10 to 60°C, of equimolar amounts of the diacid chloride and the diamine in an amide solvent, typically dimethyl acetamide (DMAc) or A/-meth5i-2-pyrrohdinone (NMP) and usually with a small amount of an alkaU or alkaline-earth hydroxide and a metal salt, such as LiOH [1310-65-2] LiCl, Ca(OH)2 [1305-62-0] or CaCl2 added to increase the solubiUty of the polymer and neutralize the hydrochloric acid generated in the reaction. [Pg.240]

Ferrocene-1,1 -dicarhoxylic acid [1293-87-4] M 274.1, m >250°(dec), >300°. Orange-yellow crystals from AcOH. Sublimes above 230°. Monomethyl ester m 147-149° [Dokl Acad Nauk USSSR 115, 518 1957]. Dimethyl ester m 114-115° [J Am Chem Soc 14, 3458 1958]. Diacid chloride m 92-93° from pet ether. [Dokl Acad Nauk SSSR 120 1267 1958 127 333 7959.]... [Pg.424]

The reaction of diamines with diacid chlorides (see Sections 18.12 and 18.14). [Pg.479]

In 1973 Du Pont commenced production of another aromatic polytunide fibre, a poly-(p-phenyleneterephthalamide) marketed as Kevlar. It is produced by the fourth method of polyamide production listed in the introductory section of this chapter, namely the reaction of a diamine with a diacid chloride. Specifically, p-phenylenediamine is treated with terephthalyl chloride in a mixture of hexamethylphosphoramide and V-methylpyrrolidone (2 1) at -10°C Figure 18.32). [Pg.514]

Polyamide-imides may also be produced by reacting a diacid chloride with an excess of diamine to produce a low molecular mass polyamide with amine end groups. This may then be chain extended by reaction with pyromellitic dianhydride to produce imide linkages. Alternatively the dianhydride, diamine and diacid chloride may be reacted all together. [Pg.525]

The early literature on the reactions of the indole Grignard reagents with the simple diacid chlorides, in particular with carbonyl chloride and oxalyl chloride (see Section III,C,4,b), is both conflicting and confusing and much of the work reported warrants repetition since the evidence presented in support of many of the structural assignments made is not entirel3 convincing. [Pg.97]

Interfacial polycondensation between a diacid chloride and hexamethylenediamine in the presence of small amounts of ACPC also yield polymeric azoamid, which is a macroazo initiator.[27] In this manner, azodicarbox-ylate-functional polystyrene [28], macroazonitriles from 4,4 -azobis(4-cyano-n-pentanoyl) with diisocyanate of polyalkylene oxide [29], polymeric azo initiators with pendent azo groups [3] and polybutadiene macroazoinitiator [30] are macroazoinitiators that prepare block and graft copolymers. [Pg.728]

In addition to a block copolymer, a microcapsule was made from suspension interfacial polycondensation between diacid chloride having aromatic-aliphatic azo group and aliphatic triamine [70,71]. The capsule was covered with a crosslinked structure having an azo group that was thermally stable but sensitive to light so as to be applicable to color photoprinting materials. [Pg.763]

When an amine reacts with an acid chloride, an amide is formed. What would happen, though, if a diamine and a diacid chloride were allowed to react Each partner could form two amide bonds, linking more and more molecules together until a giant polyamide resulted. In the same way, reaction of a diol with a diacid would lead to a polyester. [Pg.818]

Solution reactions between diacid chlorides and diols or diphenols are carried out in THF or CH2C12 at —10 to 30°C in die presence of tertiary amines such as triethylamine or pyridine, which play a role of both reaction catalyst and HC1 acceptor (Scheme 2.26). This synthetic mediod is also termed acceptor-catalytic polyesterification.295-297 High-temperature solution reactions have also been reported for a number of less soluble, generally semicrystalline, aromatic polyesters.6 They yield high-molar-mass polyesters exhibiting good mechanical properties and thermal stability. [Pg.75]

Morgan and Kwolek33 have described a large number of PA derived from phenylenediamines and aliphatic diacids by low-temperature solution polymerization starting with aliphatic diacid chlorides. [Pg.183]

The Suzuki reaction was also used to prepare the polyketone since this particular reaction tolerates the subsequent step (Scheme 6.19).135 Palladium-catalyzed cross-coupling of aromatic diacid chlorides and bis(trimethylstannane) monomers was utilized to prepare poly(arylene ether ketone)s.136... [Pg.347]

Diacetoxybenzoic acid, synthesis and polymerization of, 116-118 Diacid, anhydride, and diol reaction, 97 Diacid chloride-diol solution reactions, 75-77... [Pg.581]

Diacid chloride methods, 182-183 Diacid chlorides, 333 Diacid-diol copolyesters, 43 Diacid-diol polyesterifications, 66 Diacid-diol reaction, 95-97 Diacid method, 180-181 Diacids... [Pg.581]

Mixed diacid chlorides with Terephthalate/isophthalate ratio of 50/50 was used during the reactions to inhibit the formation of crystalline ester segments b Composition in weight percent remaining part of the siloxane backbone is dimethylsiloxane ... [Pg.39]

Diamine 108 led to 95% ee for the alkylation of l,3-diphenyl-2-propenyl acetate with 90% yield. By polycondensation with a diacid chloride or polyaddition with a diisocyanate, this ligand led, respectively, to an insoluble poly(amide) 109 or poly(urea) 110 with excellent yields. Poly(amide) 109 gave a better ee (80%) than poly(urea) 110 (38%), albeit with a lower conversion (respectively, 38 and 72%), when they were used as palladium hgands... [Pg.140]

Haptens with an amino group. Amine groups in haptens, carrier proteins or both can be modified for conjugation through homo- or heterobifunctional crosslinkers such as acid anhydrides (e.g., succinic anhydride), diacid chlorides (e.g.. [Pg.641]


See other pages where Diacid chloride is mentioned: [Pg.540]    [Pg.20]    [Pg.21]    [Pg.29]    [Pg.216]    [Pg.240]    [Pg.402]    [Pg.465]    [Pg.246]    [Pg.3]    [Pg.349]    [Pg.83]    [Pg.46]    [Pg.727]    [Pg.818]    [Pg.110]    [Pg.156]    [Pg.164]    [Pg.182]    [Pg.185]    [Pg.333]    [Pg.333]    [Pg.601]    [Pg.121]   
See also in sourсe #XX -- [ Pg.178 ]

See also in sourсe #XX -- [ Pg.220 ]

See also in sourсe #XX -- [ Pg.536 ]




SEARCH



Diacid

Diacids

© 2024 chempedia.info