Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water phenol, decomposition

As already mentioned under acetyl chloride, add-chlorides react with alcohols, phenols, primary and secondary amines, the chlorine atom uniting with the hydrogen of the hydroxyl-, amido-, or imido-group, with the elimination of hydrochloric add, while the residues combine to form an ester or a substituted amide. The value of the Schotten-Baumann reaction depends on the fact that this reaction is so essentially facilitated by the presence of sodium hydroxide or potassium hydroxide- that even in the presence of water the decomposition takes place, which in the absence of alkalies is not possible ... [Pg.290]

A large amount of phenols is released in wastewater and can be lost to waste streams. A rapid increase in the distribution and abundance of plastic debris in the ocean around the world was reported, and the adverse influence of plastic s phenol residues has been of great interest Polluted water disinfection, enzymatic oxidation of chlorinated phenols, decomposition of alkylphenol polyethoxylates and combustion of phenols can lead to the formation of highly toxic compounds. High adsorption of phenols on sludge and sediments requires that their distribution in these systems also be followed. All of these facts have promoted extensive research on phenolic compounds and their fate in the environment. [Pg.1351]

Diazonium compounds are usually very soluble in water, and cannot be readily isolated, since on warming their aqueous solutions, decomposition occurs with the formation of a phenol ... [Pg.182]

Dissolve 15 ml. (15-4 g.) of aniline in a mixture of 40 ml. of concentrated hydrochloric acid and 40 ml. of water contained in a 250 ml. conical flask. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution reaches 5°. Dissolve I2 5 g. of powdered sodium nitrite in 30 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline hydrochloride solution, meanwhile keeping the latter well stirred by means of a thermometer. Heat is evolved by the reaction, and therefore a short interval should be allowed between consecutive additions of the sodium nitrite, partly to allow the temperature to fall again to 5°, and partly to ensure that the nitrous acid formed reacts as completely as possible with the aniline. The temperature must not be allowed to rise above 10°, otherwise appreciable decomposition of the diazonium compound to phenol will occur on the other hand, the temperature... [Pg.184]

Place the distillate in a separating-funnel and extract the benzonitrile twice, using about 30 ml. of ether for each extraction. Return the united ethereal extracts to the funnel and shake with 10% sodium hydroxide solution to eliminate traces of phenol formed by decomposition of the benzenediazonium chloride. Then run off the lower aqueous layer, and shake the ethereal solution with about an equal volume of dilute sulphuric acid to remove traces of foul-smelling phenyl isocyanide (CaHjNC) which are always present. Finally separate the sulphuric acid as completely as possible, and shake the ether with water to ensure absence of acid. Run off the water and dry the benzonitrile solution over granular calcium chloride for about 20 minutes. [Pg.192]

Cmde diketene obtained from the dimeriza tion of ketene is dark brown and contains up to 10% higher ketene oligomers but can be used without further purification. In the cmde form, however, diketene has only limited stabHity. Therefore, especiaHy if it has to be stored for some time, the cmde diketene is distiHed to > 99.5% purity (124). The tarry distiHation residue, containing trike ten e (5) and other oligomers, tends to undergo violent Spontaneous decomposition and is neutralized immediately with water or a low alcohol. Ultrapure diketene (99.99%) can be obtained by crystallization (125,126). Diketene can be stabHized to some extent with agents such as alcohols and even smaH quantities of water [7732-18-5] (127), phenols, boron oxides, sulfur [7704-34-9] (128) and sulfate salts, eg, anhydrous copper sulfate [7758-98-7]. [Pg.479]

Alkyl hydroperoxides can be Hquids or soHds. Those having low molecular weight are soluble in water and are explosive in the pure state. As the molecular weight increases, ie, as the active oxygen content is reduced, water solubiUty and the violence of decomposition decrease. Alkyl hydroperoxides are stronger acids than the corresponding alcohols and have acidities similar to those of phenols, Alkyl hydroperoxides can be purified through their alkali metal salts (28). [Pg.103]

Riboflavin forms fine yellow to orange-yeUow needles with a bitter taste from 2 N acetic acid, alcohol, water, or pyridine. It melts with decomposition at 278—279°C (darkens at ca 240°C). The solubihty of riboflavin in water is 10—13 mg/100 mL at 25—27.5°C, and in absolute ethanol 4.5 mg/100 mL at 27.5°C it is slightly soluble in amyl alcohol, cyclohexanol, benzyl alcohol, amyl acetate, and phenol, but insoluble in ether, chloroform, acetone, and benzene. It is very soluble in dilute alkah, but these solutions are unstable. Various polymorphic crystalline forms of riboflavin exhibit variations in physical properties. In aqueous nicotinamide solution at pH 5, solubihty increases from 0.1 to 2.5% as the nicotinamide concentration increases from 5 to 50% (9). [Pg.75]

Esters of phosphorous acid derived from aUphatic alcohols and unhindered phenols, eg, tris(nonylphenyl)phosphate (24), hydrolyze readily and special care must be taken to minimize decomposition by exposure to water or high humidity. The phosphorous acid formed by hydrolysis is corrosive to processing equipment, particularly at high temperatures. [Pg.227]

Processes to produce boric acid esters are based on the azeotropic removal of water from a mixture of the appropriate alcohol, phenol, or glycol, and boric acid. A suitable hydrocarbon azeotroping agent is used to help remove the water. The water is removed continuously by using a condenser that allows continuous return of the solvent to the reaction vessel. Eor some borate esters, such as the glycol borates, distillation can result in decomposition. [Pg.215]

Decomposition with Bases. Alkaline decomposition of poUucite can be carried out by roasting poUucite with either a calcium carbonate—calcium chloride mix at 800—900°C or a sodium carbonate—sodium chloride mix at 600—800°C foUowed by a water leach of the roasted mass, to give an impure cesium chloride solution that is separated from the gangue by filtration (22). The solution can then be converted to cesium alum [7784-17-OJ, CS2SO4 Al2(S0 2 24H20. Extraction of cesium from the poUucite is almost complete. Solvent extraction of cesium carbonate from the cesium chloride solution using a phenol in kerosene has also been developed (23). [Pg.375]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

Sulphates, silicates, carbonates, colloids and certain organic compounds act as inhibitors if evenly distributed, and sodium silicate has been used as such in certain media. Nitrates tend to promote corrosion, especially in acid soil waters, due to cathodic de-polarisation and to the formation of soluble nitrates. Alkaline soils can cause serious corrosion with the formation of alkali plumbites which decompose to give (red) lead monoxide. Organic acids and carbon dioxide from rotting vegetable matter or manure also have a strong corrosive action. This is probably the explanation of phenol corrosion , which is not caused by phenol, but thought to be caused by decomposition of jute or hessian in applied protective layers. ... [Pg.730]

Phenol-formaldehyde reactions catalyzed by zinc acetate as opposed to strong acids have been investigated, but this results in lower yields and requires longer reaction times. The reported ortho-ortho content yield was as high as 97%. Several divalent metal species such as Ca, Ba, Sr, Mg, Zn, Co, and Pb combined with an organic acid (such as sulfonic and/or fluoroboric acid) improved the reaction efficiencies.14 The importance of an acid catalyst was attributed to facilitated decomposition of any dibenzyl ether groups formed in the process. It was also found that reaction rates could be accelerated with continuous azeotropic removal of water. [Pg.380]

Since a small amount of water is always present in novolac resins, it has also been suggested that some decomposition of HMTA proceeds by hydrolysis, leading to the elimination of formaldehyde and amino-methylol compounds (Fig. 7.15).42 Phenols can react with the formaldehyde elimination product to extend the novolac chain or form methylene-bridged crosslinks. Alternatively, phenol can react with amino-methylol intermediates in combination with formaldehyde to produce ortho-or para-hydroxybenzylamines (i.e., Mannich-type reactions). [Pg.389]

Considerable research has been done in many industrial countries, especially in Japan and in the former U.S.S.R., on the radiation treatment of waste water and other liquid wastes (see Pikaev and Shubin, 1984 Sakumoto and Miyata, 1984). Apart from disinfection or sterilization, the processes involve the radiation treatment of polluted water, the radiation-induced decomposition of dyes, phenols, cyanides, and so forth, (vide supra). At the basis of purification of aqueous waste... [Pg.377]

Diazotization Diazonium ion decomposition gives a phenol in water and reduction in SDS Abe etal., 1983... [Pg.292]


See other pages where Water phenol, decomposition is mentioned: [Pg.24]    [Pg.289]    [Pg.413]    [Pg.700]    [Pg.700]    [Pg.702]    [Pg.198]    [Pg.246]    [Pg.497]    [Pg.609]    [Pg.784]    [Pg.64]    [Pg.299]    [Pg.65]    [Pg.229]    [Pg.103]    [Pg.392]    [Pg.33]    [Pg.228]    [Pg.609]    [Pg.784]    [Pg.57]    [Pg.96]    [Pg.288]    [Pg.290]    [Pg.295]    [Pg.541]    [Pg.92]    [Pg.67]    [Pg.248]    [Pg.123]    [Pg.101]    [Pg.257]    [Pg.481]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Phenol decomposition

Phenol-water

Phenolic decomposition

© 2024 chempedia.info