Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylidene chloride, poly copolymers

The vinyl family of polymers consists of poly(vinyl chloride), poly(vinylidene chloride), poly(vinyl acetate), and their copolymers and derived polymers. [Pg.304]

PS PSF PSU PTFE PU PUR PVA PVAL PVB PVC PVCA PVDA PVDC PVDF PVF PVOH SAN SB SBC SBR SMA SMC TA TDI TEFE TPA UF ULDPE UP UR VLDPE ZNC Polystyrene Polysulfone (also PSU) Polysulfone (also PSF) Polytetrafluoroethylene Polyurethane Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl chloride-acetate) Poly(vinylidene acetate) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl fluoride) Poly(vinyl alcohol) Styrene-acrylonitrile copolymer Styrene-butadiene copolymer Styrene block copolymer Styrene butadiene rubber Styrene-maleic anhydride (also SMC) Styrene-maleic anhydride (also SMA) Terephthalic acid (also TPA) Toluene diisocyanate Ethylene-tetrafluoroethylene copolymer Terephthalic acid (also TA) Urea formaldehyde Ultralow-density polyethylene Unsaturated polyester resin Urethane Very low-density polyethylene Ziegler-Natta catalyst... [Pg.960]

The polymer microstructure based on triad intensities in pyrolysates has been evaluated for poly(styrene-co-butyl acrylate), poly(styrene-co-methyl methacrylate), poly(vinyl chloride-co-vinylidene chloride), poly(styrene-co-maleic anhydride), and for chlorinated polyethylene considered as a copolymer of polyethylene and vinyl chloride [30]. [Pg.167]

Inverse gas chromatography, IGC, has been used to study water sorption of two poly (vinylidene chloride-vinyl chloride) and poly (vinylidene chloride-acrylonitrile) copolymers, at temperatures between 20 and 50°C and low water uptakes. It was found that the specific retention volume of water increases with decreasing amount of water injected, increases dramatically with decreasing temperature and strongly depends on the type of copolymer. Thermodynamic parameters of sorption namely free energy, entropy, enthalpy of sorption and activity coefficient were calculated. [Pg.77]

In this paper, the water sorption of two commercially available vinylidene chloride copolymers is studied using IGC at low probe concentrations. The copolymers are a poly (vinylidene chloride-vinyl chloride) copolymer (Saran B) and a poly (vinylidene chloride-acrylonitrile) copolymer (Saran F). These copolymers are extensively used in the form of films, coatings, and film laminates in various industrial applications (for example, packaging of foods and pharmaceuticals) where their diffusion characteristics are of prime importance. [Pg.78]

Four polymers with different surface compositions were used in this study—polystyrene (PS), poly(methyl methacrylate) (PMMA), polyacrylamide (PAM), and a poly(vinylidene chloride) (PVeC) copolymer (containing 20% polyacrylonitrile). Polystyrene has essentially a hydrocarbon surface, whereas the surfaces of poly (methyl methacrylate) and polyacrylamide contain ester and amide groups, respectively. The surface of the poly(vinylidene chloride) copolymer on the other hand will contain a relatively large number of chlorine atoms. The presence of acrylonitrile in the poly(vinylidene chloride) copolymer improved the solubility characteristics of the polymer for the purposes of this study, but did not appreciably alter, its critical surface tension of wetting. Values of y of these polymers ranged from 30 to 33 dynes per cm. for polystyrene to approximately 40 dynes per cm. for the poly(vinylidene chloride) copolymer. No attempt was made to determine e crystallinity of the polymer samples, or to correlate crystallinity with adsorption of the fluorocarbon additives. [Pg.319]

Poly (vinylidene chloride-co-acrylonitrile). See Vinylidene chloride/acrylonitrile copolymer Poly (vinylidene chloride-co-methyl acrylate). See Vinylidene chloride/methyl acrylate copolymer... [Pg.3608]

The thermal degradation of poly(vinylidene chloride) and vinylidene chloride (VDC) copolymers usually occurs with the evolution of hydrogen chloride at elevated temperature. For the homopolymer, the degradation occurs rapidly when heated to its melting point, making it difficult to formulate through extrusion processes. As a consequence, only the copolymers with vinyl chloride, alkyl acrylate and acrylonitrile, etc., are of commercial... [Pg.155]

A Russian patent [179] claimed the application of this process to many polymers—poly(vinyl chloride), poly(vinylidene chloride), poly(methyl methacrylate), polystyrene, polymethacrylonitrile, fluoroethylene polymers, poly(vinyl acetate), polyamides, polyurethanes, polyesters, phenol-formaldehyde resins, and epoxy resins. The monomers used included acrylic and methacrylic acids, their esters, amides, vinyl acetate, and styrene. Attempts have also been made to apply this system to the preparation of block copolymers from natural rubber and vinyl monomers [180]. [Pg.241]

Acrylonitrile-butadiene-styrene (ABS) copolymer Poly(vinylidene chloride)... [Pg.1011]

Vinylidene chloride copolymers were among the first synthetic polymers to be commercialized. Their most valuable property is low permeabiUty to a wide range of gases and vapors. From the beginning in 1939, the word Saran has been used for polymers with high vinylidene chloride content, and it is still a trademark of The Dow Chemical Company in some countries. Sometimes Saran and poly (vinylidene chloride) are used interchangeably in the Hterature. This can lead to confusion because, although Saran includes the homopolymer, only copolymers have commercial importance. The homopolymer, ie, poly (vinylidene chloride), is not commonly used because it is difficult to fabricate. [Pg.427]

Vinylidene Chloride Copolymer Latex. Vinyhdene chloride polymers are often made in emulsion, but usuaUy are isolated, dried, and used as conventional resins. Stable latices have been prepared and can be used direcdy for coatings (171—176). The principal apphcations for these materials are as barrier coatings on paper products and, more recently, on plastic films. The heat-seal characteristics of VDC copolymer coatings are equaUy valuable in many apphcations. They are also used as binders for paints and nonwoven fabrics (177). The use of special VDC copolymer latices for barrier laminating adhesives is growing, and the use of vinyhdene chloride copolymers in flame-resistant carpet backing is weU known (178—181). VDC latices can also be used to coat poly(ethylene terephthalate) (PET) bottles to retain carbon dioxide (182). [Pg.442]

Ninety-six percent of the EDC produced in the United States is converted to vinyl chloride for the production of poly(vinyl chloride) (PVC) (1) (see Vinyl polymers). Chloroform and carbon tetrachloride are used as chemical intermediates in the manufacture of chlorofluorocarbons (CECs). Methjiene chloride, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene have wide and varied use as solvents. Methyl chloride is used almost exclusively for the manufacture of silicone. Vinylidene chloride is chiefly used to produce poly (vinylidene chloride) copolymers used in household food wraps (see Vinylidene chloride and poly(vinylidene chloride). Chloroben2enes are important chemical intermediates with end use appHcations including disinfectants, thermoplastics, and room deodorants. [Pg.506]

Copolymers of acrylonitrile and vinylidene chloride have been used for many years to produce films of low gas permeability, often as a coating on another material. Styrene-acrylonitrile with styrene as the predominant free monomer (SAN polymers) has also been available for a long time. In the 1970s materials were produced which aimed to provide a compromise between the very low gas permeability of poly(vinylidene chloride) and poly(acrylonitrile) with the processability of polystyrene or SAN polymers (discussed more fully in Chapter 16). These became known as nitrile resins. [Pg.416]

The program will be demonstrated with poly(vinyl alcohol) for tacticity analysis and with copolymer vinylidene chloride isobutylene for monomer sequence analysis. Peak assignments in C-13 spectra were obtained independently by two-dimensional NMR techniques. In some cases, assignments have been extended to longer sequences and confirmed via simulation of the experimental data. Experimental and "best-fit" simulated spectra will be compared. [Pg.161]

Conversely, cling film (plasticised PVC/PVDC, (poly(vinyl chloride)/poly (vinylidene chloride), copolymer, which has very high gas-barrier properties) on peeling from a roll generates static electricity thus promoting adhesion to a surface, e.g., ceramics, but not metallic surfaces which conduct the static electricity away... [Pg.94]

To illustrate the compaction process that occurs in an extruder, a Maddock solidification [1] experiment (described in detail in Section 10.3.1) was performed using a 63.5 mm diameter machine [2]. The extruder was operated at a screw speed of 60 rpm with a poly(vinylidene chloride) copolymer (PVDC) powder. After the extruder reached a steady-state operation, screw rotation was stopped and full cooling was applied to the extruder. After several hours of cooling, the screw and PVDC resin were removed from the extruder and the density of the bed was measured using Archimedes s principle. The compaction phenomenon in the extruder is shown by the density measurements of the solid bed in Fig. 4.1. As shown in this figure, the density of the solid bed increased from the feedstock bulk density of 0.73 g/cm to nearly the solid density of 1.7 g/cmT... [Pg.110]

Saran PVC and poly(vinylidene chloride) copolymer Dow Plastics... [Pg.681]

More than 500 million pounds of poly(vinyl acetate) (PVAc), poly(vinylidene chloride), and their copolymers and polymers derived from them are produced annually in the United States. PVAc does not have sufficient strength for producing the types of products obtained from polyethylene, polystyrene, and poly(vinyl chloride) since it is noncrystalline and has a Tg of only 28°C. However, poly(vinyl acetate) (XLI) and its copolymers find uses as... [Pg.306]

Poly(vinylidene chloride) (XLII) and its copolymers with vinyl chloride, acrylonitrile, and acrylates, usually produced by the suspension or emulsion process, are useful as oil, fat, oxygen, and moisture-resistant packaging films (Saran wrap), containers, coatings, tank liners, and monofilaments in drapery fabrics and industrial filter cloths. [Pg.306]

Abbreviations for plastics ABS, acrylonitrile-butadiene-styrene CPVC, chlorinated poly vinyl chloride ECTFE, ethylene-chlorotrifluoroethylene ETFE, ethylene-tetrafluoroethylene PB, polybutylene PE, polyethylene PEEK, poly ether ether ketone PFA, perfluoroalkoxy copolymer POP, poly phenylene oxide PP, polypropylene PVC, polyvinyl chloride PVDC, poly vinylidene chloride PVDF, poly vinylidene fluoride. [Pg.77]

Polymer Solvent. Sulfolane is a solvent for a variety of polymers, including polyacrylonitrile (PAN), poly(vinylidene cyanide), poly(vinyl chloride) (PVC), poly(vinyl fluoride), and polysulfones (124—129). Sulfolane solutions of PAN, poly(vinylidene cyanide), and PVC have been patented for fiber-spinning processes, in which the relatively low solution viscosity, good thermal stability, and comparatively low solvent toxicity of sulfolane are advantageous. Powdered perfluorocarbon copolymers bearing sulfo or carboxy groups have been prepared by precipitation from sulfolane solution with toluene at temperatures below 300°C. Particle sizes of 0.5—100 Jim result. [Pg.70]

Vamell, D. F., Runt, J. P., Coleman, M. M. FT-IR and Thermal Analysis Studies of Blends of Poly(Caprolactone) and Homo- and Copolymers of Poly(vinylidene chloride). Preprint submitted to CARBON... [Pg.152]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometallic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinylidene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see VlNYL polymers). [Pg.544]

Because of the intractability of poly(vinylidene chloride), these studies have used copolymers containing various comonomers however, the results are believed to be indicative of the interactions with vinylidene chloride units and not primarily those of the comonomer. [Pg.412]


See other pages where Vinylidene chloride, poly copolymers is mentioned: [Pg.722]    [Pg.273]    [Pg.257]    [Pg.722]    [Pg.405]    [Pg.86]    [Pg.122]    [Pg.8988]    [Pg.722]    [Pg.471]    [Pg.115]    [Pg.198]    [Pg.42]    [Pg.211]    [Pg.405]    [Pg.417]    [Pg.114]    [Pg.147]    [Pg.551]    [Pg.148]    [Pg.295]    [Pg.908]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



Copolymers chloride

Poly chloride

Poly vinylidene chloride

Vinylidene

Vinylidene chloride

Vinylidene chloride copolymers

Vinylidene copolymer

Vinylidenes

© 2024 chempedia.info