Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon surfaces

Much of the classic work with boundary lubrication was carried out by Sir William Hardy [44,45]. He showed that boundary lubrication could be explained in terms of adsorbed films of lubricants and proposed that the hydrocarbon surfaces of such films reduced the fields of force between the two parts. [Pg.444]

Surface tension accounts for a number of everyday phenomena. For example, a droplet of liquid suspended in air or on a waxy surface is spherical because the surface tension pulls the molecules into the most compact shape, a sphere (Fig. 5.14). The attractive forces between water molecules are greater than those between water and wax, which is largely hydrocarbon. Surface tension decreases as the temperature rises and the interactions between molecules are overcome by the increased molecular motion. [Pg.309]

At least for ethylene hydrogenation, catalysis appears to be simpler over oxides than over metals. Even if we were to assume that Eqs. (1) and (2) told the whole story, this would be true. In these terms over oxides the hydrocarbon surface species in the addition of deuterium to ethylene would be limited to C2H4 and C2H4D, whereas over metals a multiplicity of species of the form CzH D and CsHs-jD, would be expected. Adsorption (18) and IR studies (19) reveal that even with ethylene alone, metals are complex. When a metal surface is exposed to ethylene, selfhydrogenation and dimerization occur. These are surface reactions, not catalysis in other words, the extent of these reactions is determined by the amount of surface available as a reactant. The over-all result is that a metal surface exposed to an olefin forms a variety of carbonaceous species of variable stoichiometry. The presence of this variety of relatively inert species confounds attempts to use physical techniques such as IR to char-... [Pg.3]

Methylene groups, as hydrocarbon surface species, vibrational spectra, 42 219-220 2-Methylene-1-methylbicyclo [2.2.1] heptane, 20 269, 279... [Pg.143]

In some cases, the step sites have different chemistry, i.e., they break chemical bonds, thereby producing new chemical species on the surface. This happens for example during NO adsorption on a stepped platinum surface l In this circumstance the step effect on ordering is through the new types of chemistry introduced by the presence of steps. Hydrocarbons for example dissociate readily at stepped surfaces of platinum or nickel while this occurs much more slowly on the low Miller-Index surfaces in the absence of a large concentration of steps As a result ordered hydrocarbon surface structures cannot be formed on the stepped surfaces of these metals while they can be produced on the low Miller-Index surfaces. [Pg.15]

Fluorination of polyethylene surfaces leads to an increase in the surface energy, some degree of cross-linking and a reduction of the free volume of the polymer. All of these effects impart on the surface of the polymer a barrier that is very impermeable to hydrocarbon solvents. A blow-moulding process, in which a low concentration of fluorine in nitrogen is used as the blow-moulding gas, is used for the production of plastic fuel tanks for the automotive industry (Airopak , Air Products) [51]. Post-treatment of hydrocarbon surfaces with fluorine is an alternative technology and techniques for the surface fluorination of natural and synthetic rubber have been described [52]. [Pg.8]

The rough water-hydrocarbon surface of the core introduced in Figure 8.3c suggests that the core of the micelle should really be considered as two distinct regions an inner core that is essentially water-free and a hydrated shell between the inner core and the polar heads. This partly aqueous shell is sometimes called the palisade layer. The extent to which the hydrocarbon chains protrude into the water is problematic, but we can get an idea of the volume of the palisade layer as follows. [Pg.365]

In general, in Part II we apply the same pattern of analysis to the numerous published vibrational spectra derived from the adsorption of alkynes, alkanes, and aromatic hydrocarbons. In addition, we summarize recently obtained spectroscopic results characterizing hydrocarbon species obtained by thermal, photochemical, or electron-bombardment dissociation of halogen- or nitrogen-substituted alkanes on single-crystal metal surfaces. The hydrocarbon surface species so obtained are normally as anticipated from the replacement of the heteroatoms by surface metal atoms. The... [Pg.182]

IV. Hydrocarbon Surface Species Derived from the Dissociative Adsorption of Halogen- or Nitrogen-Substituted Alkanes... [Pg.214]


See other pages where Hydrocarbon surfaces is mentioned: [Pg.1031]    [Pg.23]    [Pg.59]    [Pg.190]    [Pg.45]    [Pg.58]    [Pg.85]    [Pg.86]    [Pg.102]    [Pg.102]    [Pg.130]    [Pg.143]    [Pg.188]    [Pg.47]    [Pg.128]    [Pg.33]    [Pg.10]    [Pg.61]    [Pg.61]    [Pg.183]    [Pg.197]    [Pg.199]   
See also in sourсe #XX -- [ Pg.524 , Pg.533 , Pg.534 ]




SEARCH



© 2024 chempedia.info