Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl monomers, water-soluble

Water Solubility of Vinyl Monomers Water Solubility (25 -50 ), mM... [Pg.8]

Similarly, vinyl monomers can be put in order from hard to soft monomer, according to their hydrophobicities. As a scale of hydrophobicity of vinyl monomer, the solubility in water may be adopted. Figure 10 showed some examples. Styrene is the most hard monomer and AN is the most soft monomer. Butyl acrylate and butyl methacrylate are more hard by one order than methyl or ethyl acrylate and methacrylate. [Pg.111]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Poly(methyl vinyl ether) [34465-52-6] because of its water solubility, continues to generate commercial interest. It is soluble in all proportions and exhibits a well-defined cloud point of 33°C. Like other polybases, ie, polymers capable of accepting acidic protons, such as poly(ethylene oxide) and poly(vinyl pyrroHdone), each monomer unit can accept a proton in the presence of large anions, such as anionic surfactants, Hl, or polyacids, to form a wide variety of complexes. [Pg.517]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

Vinyl chloride is a reactive gas soluble in alcohol hut slightly soluble in water. It is the most important vinyl monomer in the polymer industry. The U.S. production of vinyl chloride, the 16th highest-volume chemical, was approximately 14.8 billion pounds in 1994. [Pg.202]

Emulsion polymerization is widely used to produce polymers in the form of emulsions, such as paints and floor polishes. It also used to polymerize many water insoluble vinyl monomers, such as styrene and vinyl chloride. In emulsion polymerization, an agent emulsifies the monomers. Emulsifying agents should have a finite solubility. They are either ionic, as in the case of alkylbenzene sulfonates, or nonionic, like polyvinyl alcohol. [Pg.316]

Vinyl monomers may be polymerized at favorable rates in an aqueous medium containing an emulsifier and a water-soluble initiator. A typical simple Tecipe would consist of the following ingredients with their proportions indicated in parts by weight 100 of monomer, 180 of water, 2 to 5 of a fatty acid soap, and 0.1 to 0.5 of potassium persulfate. Cationic soaps (e.g., dodecylamine hydrochloride) may be used instead of the fatty acid soap, and various other initiators may replace the persulfate (e.g., hydrogen peroxide and ferrous ion, or a water-soluble organic hydroperoxide). [Pg.203]

A polymeric composition for reducing fluid loss in drilling muds and well cement compositions is obtained by the free radical-initiated polymerization of a water-soluble vinyl monomer in an aqueous suspension of lignin, modified lignins, lignite, brown coal, and modified brown coal [705,1847]. The vinyl monomers can be methacrylic acid, methacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, vinylacetate, methyl vinyl ether, ethyl vinyl ether, N-methylmethacrylamide, N,N-dimethylmethacrylamide, vinyl sulfonate, and additional AMPS. In this process a grafting process to the coals by chain transfer may occur. [Pg.46]

However, the mechanism of action of filtration control additives is not yet completely understood. Examples are bentonite, latex, various organic polymers, and copolymers. Many additives for fluid loss are water-soluble polymers. Vinyl sulfonate fluid loss additives based on the 2-acrylamido-2-methyl-propane sulfonic acid (AMPS) monomer are in common use in field cementing operations [363]. The copolymerization of AMPS with conjugate monomers yields a fluid loss agent whose properties include minimal retardation, salt tolerance, high efficiency, thermal stability, and excellent solids support. [Pg.147]

Polymer from N- Vinyl Lactams and Vinyl Sulfonates. A water-soluble polymer from N-vinyl lactam monomers or vinyl-containing sulfonate monomers... [Pg.244]

Polymerization of vinyl chloride occurs through a radical chain addition mechanism, which can be achieved through bulk, suspension, or emulsion polymerization processes. Radical initiators used in vinyl chloride polymerization fall into two classes water-soluble or monomer-soluble. The water-soluble initiators, such as hydrogen peroxide and alkali metal persulfates, are used in emulsion polymerization processes where polymerization begins in the aqueous phase. Monomer-soluble initiators include peroxides, such as dilauryl and benzoyl peroxide, and azo species, such as 1,1 -azobisisobutyrate, which are shown in Fig. 22.2. These initiators are used in emulsion and bulk polymerization processes. [Pg.344]

Propylene oxide is a surface active monomer structurally similar to ethylene oxide and therefore of interest as a SHM W-SP, but with more than ten repeating units this polymer is not water soluble. A compositional isomer methyl vinyl ether is water soluble the adsorption behavior of this polymer (PMVE) is illustrated in Figure 4. At 1 ppm the rate of 7T increase is linear over three hours. The diffusion rate could be calculated if the W-SP s molecular weight were monodispersed. The polymer studied had a Gaussian molecular weight distribution, which is true of essentially all W-SPs even after attempts have been made to... [Pg.117]

A number of reports in the literature describe the use of alkyl thiosulfates to modify reactive vinyl type monomers and/or preformed polymers with the expressed goals of producing polymers with enhanced water solubility (1-61. The alkylthiosulfate modified polymers have been shown to be thermally and photochemically reactive and capable of producing crosslinked films with varying degrees of stability (5). [Pg.280]

This technique is extensively used for the free radical polymerisation of vinyl monomers containing water soluble initiators. The monomers like vinyl chloride, butadiene, chloroprene, vinyl acetate, acrylates and methacrylates are polymerised by this technique. [Pg.18]

PVA Formation Reaction. Poly(vinyl alcohol) is itself a modified polymer being made by the alcoholysis of poly(vinyl acetate) under acid or base catalysis as shown in Equation 1 (6.7). This polymer cannot be made by a direct polymerization because the vinyl alcohol monomer only exists in the tautomeric form of acetaldehyde. This saponification reaction can also be run on vinyl acetate copolymers and this affords a means of making vinyl alcohol copolymers. The homopolymer is water soluble and softens with decomposition at about 200°C while the properties of the copolymers would vary widely. Poly(vinyl alcohol) has been widely utilized in polymer modification because ... [Pg.83]

Figure 10. Solubilities of vinyl monomers at 20°C. Numbers indicate the solubilities of the monomers in water (g dm 3) (BA) butyl acrylate (BMA) butyl methacrylate (EA) ethyl acrylate (MA) methyl acrylate. (, 27) (, 28)... Figure 10. Solubilities of vinyl monomers at 20°C. Numbers indicate the solubilities of the monomers in water (g dm 3) (BA) butyl acrylate (BMA) butyl methacrylate (EA) ethyl acrylate (MA) methyl acrylate. (, 27) (, 28)...
Suspension polymerization. In this process, monomers and initiator are suspended as droplets in water or a similar medium. The droplets are maintained in suspension by agitation (active mixing). Sometimes a water-soluble polymer like methylcellulose or a finely divided clay is added to help stabilize or maintain the droplets. After formation, the polymer, is separated and dried. This route is used commercially for vinyl-type polymers such as polyvinyl chloride and polystyrene. [Pg.329]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]

Water insoluble monomers such as vinyl chloride may be polymerized as suspended droplets (10-1000 nm in diameter) in a process called suspension (pearl) polymerizations. Coalescence of droplets is prevented by the use of small amounts of water-soluble polymers, such as PVA. The suspension process is characterized by good heat control and ease of removal of the discrete polymer particles. [Pg.187]

Many water-soluble vinyl monomers may be polymerized by the emulsion polymerization technique. This technique, which differs from suspension polymerization in the size of the suspended particles and in mechanism, is widely used for the production of a number of commercial plastics and elastomers. While the particles in the suspension range from 10 to 1000 nm, those in the emulsion process range from 0.05 to 5 nm in diameter. The small beads produced in the suspension process may be separated by filtering, but the latex produced in emulsion polymerization is a stable system in which the charged particles cannot be recovered by ordinary separation procedures. [Pg.187]


See other pages where Vinyl monomers, water-soluble is mentioned: [Pg.421]    [Pg.316]    [Pg.316]    [Pg.278]    [Pg.45]    [Pg.125]    [Pg.260]    [Pg.46]    [Pg.439]    [Pg.463]    [Pg.464]    [Pg.524]    [Pg.511]    [Pg.482]    [Pg.490]    [Pg.26]    [Pg.502]    [Pg.82]    [Pg.131]    [Pg.98]    [Pg.210]    [Pg.157]    [Pg.154]    [Pg.298]    [Pg.352]   


SEARCH



Monomer water-soluble

Monomer, solubility

Vinyl monome

Vinyl monomer

Vinyl monomers, water-soluble formation

Vinyl solubilities

Vinylic monomers

Water monomers

Water-soluble vinylic monomer

© 2024 chempedia.info