Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particles suspended

Suspended particles can lead to two kinds of problem. First, large solid particles can become jammed in narrow parts of certain geometries, such as the cone and plate. However, the cone truncation often used to prevent wear of the tip, often helps. Second, if the viscometer gap is not around five to ten times larger than the largest particles, then the correct viscosity of the material is not being measured, since the particle spatial distribution is being altered by the wall. [Pg.46]

As we have seen, viscometers are instruments that can either apply a force and measure a speed, or apply a speed and meastue a force, to or from a simple geometry. This might be as simple as a U-tube viscometer that meastues the time taken for a gravity-driven flow to move from one vertical position to another, or a similar situation for flow from the hole at the bottom of a carefully manufactured cup called a flow-cup, see figure 7. [Pg.46]

In both these situations, the shear stress experienced by the liquid being tested varies [Pg.46]

These cups are perfectly adequate for Newtonian liquids, once a correction has been made for the effect of fluid density, but because of the variations mentioned, the measurement of viscosity for non-Newtonian liquids becomes impossible. However, if we want to apply a more well-defined situation, such as a fixed shear stress or shear rate ever3Avhere in the liquid, we need more control. [Pg.46]

Originally, such controlled viscometers were based on an applied shear stress which was generated by a weights-and-pulleys arrangement, as shown for instance in figure 8. [Pg.47]

5 Water impurities and their effect 5.5.5.1 Suspended particles [Pg.98]

Suspended particles may consist of complex inorganic hydroxides and silicates or, sometimes, organic debris. Particles too small to be easily distinguished can cause difficulties when a drink is carbonated, acting as minute centres of instability resulting in a loss of carbonation, foaming (gushing) at the filler-head and variable fill volumes. [Pg.98]

In non-carbonated drinks there may be visible deposits, and sometimes a neck ring in the finished product, caused by agglomeration of smaller particles. Filtration of the incoming water stream is therefore essential. [Pg.98]


Many properties of colloidal suspensions, such as their stability, rheology, and phase behaviour, are closely related to the interactions between the suspended particles. The background of the most important contributing factors to these interactions is discussed in this section. [Pg.2674]

Figure 6.10 Schematic representation of the distribution of surfactant in an emulsion polymerization. Note the relative sizes of suspended particles. [From J. W. Vanderhoff, E. B. Bradford, H. L. Tarkowski, J. B. Shaffer, and R. M. Wiley,Chem. 34 32(1962).]... Figure 6.10 Schematic representation of the distribution of surfactant in an emulsion polymerization. Note the relative sizes of suspended particles. [From J. W. Vanderhoff, E. B. Bradford, H. L. Tarkowski, J. B. Shaffer, and R. M. Wiley,Chem. 34 32(1962).]...
Electrophoresis and electro osmosis can be used to enhance conventional cake filtration. Electrodes of suitable polarity are placed on either side of the filter medium so that the incoming particles move toward the upstream electrode, away from the medium. As most particles carry negative charge, the electrode upstream of the medium is usuaHy positive. The electric field can cause the suspended particles to form a more open cake or, in the extreme, to prevent cake formation altogether by keeping aH particles away from the medium. [Pg.390]

Samples that contain suspended matter are among the most difficult types from which to obtain accurate pH readings because of the so-called suspension effect, ie, the suspended particles produce abnormal Hquid-junction potentials at the reference electrode (16). This effect is especially noticeable with soil slurries, pastes, and other types of colloidal suspensions. In the case of a slurry that separates into two layers, pH differences of several units may result, depending on the placement of the electrodes in the layers. Internal consistency is achieved by pH measurement using carefully prescribed measurement protocols, as has been used in the determination of soil pH (17). [Pg.467]

Suspended Particle Techniques. In these methods of size enlargement, granular soHds are produced direcdy from a Hquid or semiliquid phase by dispersion in a gas to allow solidification through heat and/or mass transfer. The feed Hquid, which may be a solution, gel, paste, emulsion, slurry, or melt, must be pumpable and dispersible. Equipment used includes spray dryers, prilling towers, spouted and fluidized beds, and pneumatic conveying dryers, all of which are amenable to continuous, automated, large-scale operation. Because attrition and fines carryover are common problems with this technique, provision must be made for recovery and recycling. [Pg.120]

Overland water flow appHes shear forces to sod surfaces. When shear forces exceed the stress required to overcome cohesive forces between sod particles, the particles are detached and suspended in the flow. Suspended particles are carried into surface sod with infiltrating water where they block pores and initiate seal formation (47). Thus, erosion results in reduced water infiltration as well as loss of sod from the field and consequent downstream water pollution. If erosion is controlled, good water infiltration is maintained. [Pg.229]

This deposit is composed of suspended particles similar to conventional filter cakes, and more importantly, a slime that forms as retained solutes exceed their solubility. The gel concentration 6 is a function of the feed composition and the membrane-pore size. The gel usually has a much lower hydrauHc permeabihty and smaller apparent pore size than the underlying membrane (27). The gel layer and the concentration gradient between the gel layer and the bulk concentration are called the gel-polarization layer. [Pg.296]

The solubihty of hydrophobic substances in, or their absorbabiUty on suspended particles, on sediments, on biota, or on soil particles can be related to the solubihty of these substances in organic solvents. The solvent -octanol, CH2(CH2)yOH, is a kind of surrogate for many kinds of environmental and physiological organic substances and has become a reference phase for organic phase water partitioning of organic solutes. [Pg.218]

With the help of equiUbrium constants, the extent of adsorption can be predicted as a function of pH and solution variables (7,25,43). Based on this model, the partitioning of metal ions and of ligands (organic and inorganic anions between water and pelagic clays and suspended particles) can be explained. [Pg.218]

The two steps in the removal of a particle from the Hquid phase by the filter medium are the transport of the suspended particle to the surface of the medium and interaction with the surface to form a bond strong enough to withstand the hydraulic stresses imposed on it by the passage of water over the surface. The transport step is influenced by such physical factors as concentration of the suspension, medium particle size, medium particle-size distribution, temperature, flow rate, and flow time. These parameters have been considered in various empirical relationships that help predict filter performance based on physical factors only (8,9). Attention has also been placed on the interaction between the particles and the filter surface. The mechanisms postulated are based on adsorption (qv) or specific chemical interactions (10). [Pg.276]

Granular Beds of Particulate Solids Beds of solids like sand or coal are used as filter media to clarify water or chemical solutions containing small quantities of suspended particles. Filter-grade grains of desired particTe size can be purchasea. Frequently beds will be constructed of layers of different materials and different particle sizes. [Pg.1708]

Particle-Bubble Attachment. In the above, principles leading to creation of desired hydrophobicity/hydrophihcity of the particles has been discussed. The next step is to create conditions for particle-bubble contact, attachment, and their removal, which is simply described as a combination of three stochastic events with which are associated the probability of particle-bubble colhsion, probabihty of attachment, and probability of retention of attachment. The first term is controlled by the hydrodynamic conditions prevaihng in the flotation unit. The second is determined by the surface forces. The third is dependent on the s irvival of the laden bubble by liq ud t irbulence and impacts by the other suspended particles. A detailed description of the hydrodynamic and other physical aspects of flotation is found in the monograph by Schulze (19 ). [Pg.1810]

There are four related electrokinetic phenomena which are generally defined as follows electrophoresis—the movement of a charged surface (i.e., suspended particle) relative to astationaiy hquid induced by an applied ectrical field, sedimentation potential— the electric field which is crested when charged particles move relative to a stationary hquid, electroosmosis—the movement of a liquid relative to a stationaiy charged surface (i.e., capiUaty wall), and streaming potential—the electric field which is created when liquid is made to flow relative to a stationary charged surface. The effects summarized by Eq. (22-26) form the basis of these electrokinetic phenomena. [Pg.2006]

In many important cases of reactions involving gas, hquid, and solid phases, the solid phase is a porous catalyst. It may be in a fixed bed or it may be suspended in the fluid mixture. In general, the reaction occurs either in the liquid phase or at the liquid/solid interface. In fixed-bed reactors the particles have diameters of about 3 mm (0.12 in) and occupy about 50 percent of the vessel volume. Diameters of suspended particles are hmited to O.I to 0.2 mm (0.004 to 0.008 in) minimum by requirements of filterability and occupy I to 10 percent of the volume in stirred vessels. [Pg.2118]

Further support for this approach is provided by modern computer studies of molecular dynamics, which show that much smaller translations than the average inter-nuclear distance play an important role in liquid state atom movement. These observations have conhrmed Swalin s approach to liquid state diffusion as being very similar to the calculation of the Brownian motion of suspended particles in a liquid. The classical analysis for this phenomenon was based on the assumption that the resistance to movement of suspended particles in a liquid could be calculated by using the viscosity as the frictional force in the Stokes equation... [Pg.293]

Suspended particles are the most important factor in visibility reduction. In most instances, the visual quality of air is controlled by partide scattering and is characterized by the extinction coeffident The size of particles plays a crucial role in their interaction with light. Other factors are the refractive index and shape of the particles, although their effect is harder to measure and is less well understood. If we could establish these properties, we could calculate the amount of light scattering and absorption. Alternatively, the extinction coeffident associated with an aerosol can be measured directly. [Pg.141]

U-Tube U-Bundle Only one tube sheet required. Tubes bent in U-shape. Bundle is removable. High temperature differentials which might require provision for expansion in fixed tube units. Clean service or easily cleaned conditions on both tube side and shell side. Horizontal or vertical. Bends must be carefully made or mechanical damage and danger of rupture can result. Tube side velocities can cause erosion of inside of bends. Fluid should be free of suspended particles. 1.08... [Pg.25]

C, = rate of loss or gain by chemical reactions, precipitation (washout), or adsorption by suspended particles... [Pg.285]


See other pages where Particles suspended is mentioned: [Pg.191]    [Pg.214]    [Pg.2675]    [Pg.2676]    [Pg.883]    [Pg.143]    [Pg.388]    [Pg.7]    [Pg.240]    [Pg.573]    [Pg.302]    [Pg.383]    [Pg.162]    [Pg.464]    [Pg.302]    [Pg.401]    [Pg.396]    [Pg.1678]    [Pg.2011]    [Pg.2011]    [Pg.2058]    [Pg.2139]    [Pg.27]    [Pg.44]    [Pg.50]    [Pg.25]    [Pg.142]    [Pg.179]    [Pg.183]    [Pg.64]    [Pg.507]    [Pg.16]    [Pg.390]   
See also in sourсe #XX -- [ Pg.211 ]

See also in sourсe #XX -- [ Pg.118 , Pg.119 , Pg.127 , Pg.196 , Pg.198 , Pg.243 , Pg.244 , Pg.284 , Pg.286 ]

See also in sourсe #XX -- [ Pg.544 ]

See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.565 , Pg.566 ]




SEARCH



Ammonium suspended particles

Atmosphere suspended particles

Biological particles suspended

Impurities suspended particles

Motion of suspended particles

Non-oxide Suspended Particle Systems and Direct Water Splitting

Particle, suspended, electrostatic

Particle, suspended, electrostatic charges

Reactor suspended particle

Sargasso suspended particles

Seawater suspended particle matter

Settling of suspended particles

Solid particles suspended in stirred liquids

Suspended Particles and Marine Sediments

Suspended particle matter

Suspended particle sampler

Suspended particles, composite

Suspended particles, composite electroplating

Suspended particles, stability

Suspended- particle devices

Suspending

Total suspended particle

Vertical profiles suspended particles

© 2024 chempedia.info