Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer-soluble initiators

In a suspension polymerisation monomer is suspended in water as 0.1—5-mm droplets, stabilised by protective coUoids or suspending agents. Polymerisation is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle sise is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.169]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Suspension Polymerization. This method (10) might be considered as a number of bulk polymerizations carried out simultaneously in the monomer droplets with water acting as a heat-transfer medium. A monomer-soluble initiator, eg, a peroxide or azo compound, and a protective coUoid like poly(vinyl alcohol) or bentonite, are requited. After completion of the polymerization, the excess of monomer(s) is steam stripped, and the beads of polymer are collected and washed on a centrifiige or filter and dried on a vibrating screen or by means of an expeUer—extmder. [Pg.474]

Emulsions stabilized with a nonionic surfactant and catalyzed with a monomer soluble initiator were found to foUow kinetics dependent on initiator concentration (17). [Pg.538]

Suspension polymerisation of styrene is widely practised commercially. In this process the monomer is suspended in droplets 5 -Min. in diameter in a fluid, usually water. The heat transfer distances for the dissipation of the exotherm are thus reduced to values in the range s-fisin. Removal of heat from the low-viscosity fluid medium presents little problem. The reaction is initiated by monomer-soluble initiators such as benzoyl peroxide. [Pg.431]

Styrene-based polymer supports are produced by o/w suspension polymerization of styrene and divinylbenzene. Suspension polymerization is usually carried out by using a monomer-soluble initiator such as benzoperoxide (BPO) or 2,2-azo-bis-isobutylnitrile (AIBN) at a temperature of 55-85°C (19). A relatively high initiator concentration of 1-5% (w/w) based on the monomer is used. The time required for complete monomer conversion must be determined by preliminary experiments and is usually between 5 and 20 h, depending on the initiator concentration, the temperature, and the exact composition of the monomer mixture (11-18). [Pg.7]

Monomer-soluble initiators are used in this polymerization technique. The monomer phase containing an initiator is dissolved in an inert solvent or solvent mixture including a steric stabilizer. The polymers or oligomer... [Pg.201]

Polymerization of vinyl chloride occurs through a radical chain addition mechanism, which can be achieved through bulk, suspension, or emulsion polymerization processes. Radical initiators used in vinyl chloride polymerization fall into two classes water-soluble or monomer-soluble. The water-soluble initiators, such as hydrogen peroxide and alkali metal persulfates, are used in emulsion polymerization processes where polymerization begins in the aqueous phase. Monomer-soluble initiators include peroxides, such as dilauryl and benzoyl peroxide, and azo species, such as 1,1 -azobisisobutyrate, which are shown in Fig. 22.2. These initiators are used in emulsion and bulk polymerization processes. [Pg.344]

Figure 22.2 Chemical structure of monomer soluble initiators for polyvinyl chloride a) dilauryl peroxide, b) benzoyl peroxide and c) azobisisobutyronitrile... Figure 22.2 Chemical structure of monomer soluble initiators for polyvinyl chloride a) dilauryl peroxide, b) benzoyl peroxide and c) azobisisobutyronitrile...
By using this technique only water insoluble monomers can be polymerised. In this process, the monomer is suspended as discrete droplets (0.1 to 1.0 mm diameter) in dilute aqueous solution containing protective colloids like polyvinyl alcohol and surfactants, etc. The droplets have large surface area and can readily transfer heat to water. Suspension is brought about by agitating the suspension. Protective colloids prevent coalescence of the droplets. A monomer soluble initiator is used. The product is obtained by filtration or spray drying. This process cannot be carried out yet in a continuous process hence batch processing has to be used. [Pg.15]

Simplest of the techniques requiring only monomer and monomer-soluble initiator, and perhaps a chain-transfer agent for molecular weight control. Characterized, on the positive side, by high polymer yield per volume of reaction, easy polymer recovery. Difficulty of removing unreacted monomer and heat control are negative features. Examples of polymers produced by bulk polymerization include poly(methyl methacrylate), polystyrene, and low-density (high pressure) polyethylene. [Pg.186]

The term suspension polymerization refers to the polymerization of macroscopic droplets in an aqueous medium. The kinetics is essentially that of a bulk polymerization with the expected adjustments associated with carrying out a number of bulk polymerizations in small particles more or less simultaneously and in reasonably good contact with a heat exchanger (i.e., the reaction medium) to control the exothermic nature of the process. Usually, suspension polymerizations are characterized by the use of monomer-soluble initiators and the use of suspending agents. [Pg.30]

Microsuspension Polymerization. Microsnspension polymerization uses a monomer-soluble initiator. The monomer is homogenized in water... [Pg.1686]

Monomer droplets are suspended in the water through the use of agitation and stabilizers, such as methyl cellulose, gelatin, polyvinyl alcohol, and sodium polyacrylate.32 Typical droplet sizes are 0.01-0.5 cm. A monomer soluble initiator is added to begin the polymerization. The kinetics of suspension polymerization are the same as for bulk polymerization, but suspension polymerization offers the advantage of good heat transfer. Polymers such as polystyrene, PVC, and polymethyl methacrylate are prepared by suspension polymerization. [Pg.636]

Non-Aqueous Processes. Dispersions of composite particles in non-aqueous media (12) have been prepared. The particles were sterically stabilised to prevent flocculation and aggregation. This was achieved by physical absorption of amphipathic graft or block copolymer (13,14) or by covalent attachment of diluent-soluble oligomer or polymer chains (15) at the particle surface so that by definition different polymers were situated at the surface and in the bulk of the particles, even for single-polymer particles. Composite particles were prepared by slow addition of the second monomer which was fully miscible with the diluent phase, obviating a monomer droplet phase further monomer-soluble initiation and amphipathic graft stabiliser was included as appropriate so that the process comprised continued dispersion... [Pg.399]

Emulsion polymerizations normally produce polymer particles with diameters ofO.I-l pm(l pm= I micron= 10 cm), although much larger particles can be made by special techniques mentioned in Chapter 8. Tlie polymer particles made by suspension reactions have diameters in the range of 50-500 pm. Recall that free-radical initiation in suspension reactions is in the monomer phase, whereas the aqueous phase is the initiation site in emulsion polymerizations. The two processes often dilTer also in the types of stabilizers that are used. Microsuspension polymerization is an alternative technique which can yield particles in the same size range as emulsion processes. This method uses a monomer-soluble initiator and anionic emulsifiers similar in nature and concentration to those used in emulsion polymerizations. A microdispersion of the mixture of the reaction ingredients is first produced mechanically and is then polymerized to provide polymer with essentially the initial fine particle size distribution. [Pg.363]

Suspension—polymerization of monomers dispersed in an inert phase with monomer-soluble initiator Low dispersion viscosity compared to bulk good heat transfer high polymerization rate and high molecular weight direct application of the latex Smaller reactor capacity than bulk reactor wall fouling wastewater problems Polystyrene, PVC, polypropylene... [Pg.1067]

Aqueous dispersions of poly(vinyl acetate) and vinyl acetate-ethylene copolymers, homo- and copolymers of acrylic monomers, and styrene-butadiene copolymers are the most important types of polymer latexes today. Applications include paints, coatings, adhesives, paper manufacturing, leather manufacturing, textiles and other industries. In addition to emulsion polymerization, other aqueous free-radical polymerizations are applied on a large scale. In suspension polymerization a water-irnrniscible olefinic monomer is also polymerized. However, by contrast to emulsion polymerization a monomer-soluble initiator is employed, and usually no surfactant is added. Polymerization occurs in the monomer droplets, with kinetics similar to bulk polymerization. The particles obtained are much larger (>15 pm) than in emulsion polymerization, and they do not form stable latexes but precipitate during polymerization (Scheme 7.2). [Pg.234]

In suspension polymerization also, a water-immiscible alkeneic monomer is polymerized. However, by contrast to emulsion polymerization a monomer-soluble initiator is employed, and usually no surfactant is added. Polymerization occurs in... [Pg.576]

In general, in previous discussions of free-radical polymerizations, we have attempted to draw a sharp distinction between suspension- and emulsion-polymerization processes. This distinction is quite readily apparent in the case of monomers which are quite insoluble in water, such as styrene. In that case, by use of monomer-soluble initiators and a variety of suspending agents, the suspension-polymerization process leads to the formation of spherical particles which can be separated by filtration. [Pg.239]

Use of monomer-soluble initiators Increases particle size... [Pg.258]

Water-insoluble monomer involves the use of stabUizas and monomer-soluble initiators. This feature leads to the formation of polydisperse monomer droplets in water in the size of about 20-1000 pm... [Pg.1373]

In this type of polymerization the monomer is dispersed in a liquid (usually water) by vigorous stirring and by the addition of stabilizers such as methyl cellulose. A monomer-soluble initiator is added in order to initiate chain-growth polymerization. Reaction heat is efficiently dispersed by the aqueous medium. The polymer is obtained in the form of granules or beads, which may be dried and packed/bagges directly for shipment. Refer to Bulk Polymerization Emulsion Polymerization, and Solution Polymerization. [Pg.298]


See other pages where Monomer-soluble initiators is mentioned: [Pg.125]    [Pg.440]    [Pg.502]    [Pg.28]    [Pg.304]    [Pg.125]    [Pg.440]    [Pg.502]    [Pg.597]    [Pg.744]    [Pg.863]    [Pg.28]    [Pg.114]    [Pg.395]    [Pg.304]    [Pg.29]    [Pg.440]    [Pg.257]    [Pg.266]    [Pg.358]   
See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.326 ]

See also in sourсe #XX -- [ Pg.326 ]




SEARCH



Monomer initial

Monomer, solubility

© 2024 chempedia.info