Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid loss additives

Fluid loss additives are also called filtrate-reducing agents. Fluid losses may occur when the fluid comes in contact with a porous formation. This is relevant for drilling and completion fluids, fracturing fluids, and cement slurries. [Pg.34]

The extent of fluid loss is dependent on the porosity and thus the permeability of the formation and may reach approximately 10 t/hr. Because the fluids used in petroleum technology are in some cases quite expensive, an extensive fluid loss may not be tolerable. Of course there are also environmental reasons to prevent fluid loss. [Pg.34]


Predictions on the effectiveness of a fluid loss additive formulation can be made on a laboratory scale by characterizing the properties of the filter-cake formed by appropriate experiments. Most of the fluids containing fluid loss additives are thixotropic. Therefore the apparent viscosity will change when a shear stress in a vertical direction is applied, as is very normal in a circulating drilling fluid. For this reason, the results from static filtering experiments are expected to be different in comparison with dynamic experiments. [Pg.36]

The properties of the filter-cake formed by macroscopic particles can be significantly influenced by certain organic additives. The overall mechanism of water-soluble fluid loss additives has been studied by determining the electrophoretic mobility of filter-cake fines. Water-soluble fluid loss additives are... [Pg.36]

Polysaccharides Cellulose-Based Fluid Loss Additives... [Pg.39]

A crosslinked starch was described as a fluid loss additive for drilling fluids [632,1626]. The additive resists degradation and functions satisfactorily after exposure to temperatures of 250° F for periods of up to 32 hours. To obtain crosslinked starch, a crosslinking agent is reacted with granular starch in an aqueous slurry. The crosslinking reaction is controlled by a Brabender... [Pg.40]

A fluid loss additive is described that consists of granular starch composition and fine particulate mica [337]. An application comprises a fracturing fluid containing this additive. A method of fracturing a subterranean formation penetrated by a borehole comprises injecting into the borehole and into contact with the formation, at a rate and pressure sufficient to fracture the formation, a fracturing fluid containing the additive in an amount sufficient to provide fluid loss control. [Pg.41]

A fluid loss additive is described [1849] that helps achieve a desired fracture geometry by lowering the spurt loss and leak-off rate of the fracturing fluid into the surrounding formation by rapidly forming a filter-cake with low permeability. The fluid loss additive is readily degraded after the completion... [Pg.41]

Compositions containing mixtures of metal hydroxides a polysaccharide, partially etherified with hydroxyethyl and hydroxypropyl groups, are used as fluid loss additives for aqueous, clay-mineral-based drilling muds [1437]. [Pg.43]

A low-molecular-weight condensation product of hydroxyacetic acid with itself or compounds containing other hydroxy acid, carboxylic acid, or hydroxy-carboxylic acid moieties has been suggested as a fluid loss additive [164]. Production methods of the polymer have been described. The reaction products are ground to 0.1 to 1500 p particle size. The condensation product can be used as a fluid loss material in a hydraulic fracturing process in which the fracturing fluid comprises a hydrolyzable, aqueous gel. The hydroxyacetic acid condensation product hydrolyzes at formation conditions to provide hydroxyacetic acid, which breaks the aqueous gel autocatalytically and eventually provides the restored formation permeability without the need for the separate addition of a gel breaker [315-317,329]. [Pg.44]

Tests showed that a fluid loss additive on a base of a sulfonated tannic-phenolic resin is effective for fluid loss control at high temperature and pressure, and it exhibits good resistance to salt and acid [868]. [Pg.45]

In hydraulic cement slurries, fluid loss additives based on sulfonated or sulfomethylated lignins have been described. [Pg.45]

Lignite can be grafted with synthetic comonomers to obtain lignite fluid loss additives [873]. Comonomers can be AMPS, N,N-dimethylacrylamide, acrylamide, vinylpyrrolidone, vinylacetate, acrylonitrile, dimethylaminoethyl methacrylate, styrene sulfonate, vinyl sulfonate, dimethylaminoethyl methacrylate methyl chloride quaternary, and acrylic acid and its salts. [Pg.46]

Adducts of aminoethylethanolamine and polyethylenepolyamines with humic acid-containing materials and fatty acids [1400] are useful as fluid loss additives in oil-based drilling fluids [854]. [Pg.48]

In addition, a fluid loss additive for oil-based drilling fluids, which consists of fatty acid compounds and lignite or humic acid, an oil-soluble or oil-dispersible amine or amine salt with phosphorie acid, or an aliphatic amide or hydroxyamide [392], has been described. [Pg.48]

Homopolymers and copolymers from amido-sulfonic acid or salt containing monomers can be prepared by reactive extrusion, preferably in a twin screw extruder [1660]. The process produces a solid polymer. Copolymers of acrylamide, N-vinyl-2-pyrrolidone, and sodium-2-acrylamido-2-methyl-propane sulfonate have been proposed to be active as fluid loss agents. Another component of the formulations is the sodium salt of naphthalene formaldehyde sulfonate [207]. The fluid loss additive is mixed with hydraulic cements in suitable amounts. [Pg.49]

A fluid loss additive for hard brine environments has been developed [1685], which consists of hydrocarbon, an anionic surfactant, an alcohol, a sulfonated asphalt, a biopolymer, and optionally an organophilic clay, a copolymer of N-vinyl-2-pyrrolidone and sodium-2-acrylamido-2-methylpropane sulfonate. Methylene-bis-acrylamide can be used as a crosslinker [1398]. Crosslinking imparts thermal stability and resistance to alkaline hydrolysis. [Pg.49]

Terpolymers and tetrapolymers have been proposed as fluid loss additives for drilling fluids [1676,1679]. The constituent monomers are a combination of nonionic monomers and ionic monomers. [Pg.49]

A tetrapolymer consisting of 40 to 80 mole-percent of AMPS, 10 to 30 mole-percent of vinylpyrroMone, 0 to 30 mole-percent of acrylamide, and 0 to 15 mole-percent of acrylonitrile was also a suggested as a fluid loss additive [1061]. Even at high salt concentrations, these polymers yield high-temperature-stable protective colloids that provide for minimal fluid loss under pressure. [Pg.50]

A fluid loss additive useful in cementing oil and gas wells is a blend [423,424,1015] of a copolymer of acrylamide/vinyl imidazole. The second component in the blend is a copolymer of vinylpyrrolidone and the sodium salt of vinyl sulfonate. Details are given in Table 2-2. The copolymers are mixed together in the range of 20 80 to 80 20. Sodium or potassium salts or a sulfonated naphthalene formaldehyde condensate can be used as a dispersant. [Pg.50]

An N-vinylpyrrolidone/acrylamide random copolymer (0.05% to 5.0% by weight) is used for cementing compositions [371, 1076]. Furthermore, a sulfonate-containing cement dispersant is necessary. The additive can be used in wells with a bottom-hole temperature of 80° to 300° F. The fluid loss additive mixture is especially effective at low temperatures, for example, below 100° F and in sodium silicate-extended slurries. [Pg.51]

Copolymers of mainly acrylic acid and 2% to 20% by weight of itaconic acid are described as fluid loss additives for aqueous drilling fluids [138]. The polymers have an average molecular weight between 100,000 and 500,000 Dalton and are water dispersible. The polymers are advantageous when used with muds containing soluble calcium and muds containing chloride ions, such as seawater muds. [Pg.52]

Copolymers from the monomers AMPS, diallyldimethylammonium chloride (DADMAC), N-vinyl-N-methylacetamide (VIMA), acrylamides, and acrylates are particularly useful for fluid loss additives [824]. The molecular weights of the copolymers range from 200,000 to 1,000,000 Dalton. The copolymers are used in suspensions of solids in aqueous systems, including saline, as water binders. In these systems, the water release to a formation is substantially reduced by the addition of one or more of these copolymers. [Pg.52]

Lignin amines with high nitrogen content are water soluble at both alkaline and acidic pH values. The lignin amines have various useful properties. For example, they are active as flocculants, filtration aids, scale inhibitors, fluid loss additives, oil well cement additives, and corrosion inhibitors among other potential uses. The nitrogen is introduced into the lignins with the Mannich reaction [1570]. [Pg.94]

The cement usually is mixed dry with the additives. Depending on the application of the cement, a wide variety of additives can be incorporated. These include accelerators, retarders, dispersants, extenders, weighting agents, gels, foamers, and fluid loss additives. [Pg.128]


See other pages where Fluid loss additives is mentioned: [Pg.1181]    [Pg.7]    [Pg.22]    [Pg.22]    [Pg.34]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.41]    [Pg.42]    [Pg.43]    [Pg.45]    [Pg.45]    [Pg.47]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.53]    [Pg.53]    [Pg.55]    [Pg.55]    [Pg.57]   
See also in sourсe #XX -- [ Pg.4 , Pg.11 ]




SEARCH



Fluid Loss Control Additives

Fluid loss

© 2024 chempedia.info