Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl finishes

Vinyl finish 35 50 60 min 16 h Durable finish coat over high build chlorinated rubber and vinyl systems applied to interior and exterior surfaces in marine and industrial environments... [Pg.99]

A vinyl finish for ABS or ABS blends could be based on a 1 1 blend of a PVC/VA resin such as Ucar VYHD and a carboxylated grade such as Ucar VMCC (to promote increased adhesion) in a blend of MIBK and toluene, with the proportions adjustable to provide suitable drying times. Pigments would be added to the solution as liquid colors in plasticizer. After preparation at about 20 percent solids, the product could be thinned as needed for suitable coating weight. [Pg.71]

A small amount of particleboard is made with a fire-retardant treatment for use in locations where codes require this material, as in some offices and elevators. Particleboards receive overlay and finishing treatments with ease. Wood veneers, melamine overlays, printed paper overlays, vinyl overlays, foils, and direct grain printing can all be done quite simply. A small amount of particleboard is also made in the form of shaped, molded articles such as furniture parts, paper roU plugs, bmsh bases, and even toilet seats. There is another small increment of particleboard made by the extmsion process. These products are made in small captive operations owned by furniture manufacturers which consume all of this production in their furniture. The extmsion process differs from conventional flat-pressed particleboard in that the wood furnish is forced between two stationary heated surfaces. The mats are formed from one edge and this edge is alternately formed and pushed between the heated platens, which are maintained at a distance equal to the thickness of board produced. This is an old, slow, small-scale process, but is stiU in use in at least one location. [Pg.393]

Most of the acetic acid is produced in the United States, Germany, Great Britain, Japan, France, Canada, and Mexico. Total annual production in these countries is close to four million tons. Uses include the manufacture of vinyl acetate [108-05-4] and acetic anhydride [108-24-7]. Vinyl acetate is used to make latex emulsion resins for paints, adhesives, paper coatings, and textile finishing agents. Acetic anhydride is used in making cellulose acetate fibers, cigarette filter tow, and ceUulosic plastics. [Pg.64]

Polyester composition can be determined by hydrolytic depolymerization followed by gas chromatography (28) to analyze for monomers, comonomers, oligomers, and other components including side-reaction products (ie, DEG, vinyl groups, aldehydes), plasticizers, and finishes. Mass spectroscopy and infrared spectroscopy can provide valuable composition information, including end group analysis (47,101,102). X-ray fluorescence is commonly used to determine metals content of polymers, from sources including catalysts, delusterants, or tracer materials added for fiber identification purposes (28,102,103). [Pg.332]

Decabromodiphenyl Oxide—Polyacrylate Finishes. An alternative to the diffusion technique is the appHcation of decabromodiphenyl oxide on the surface of fabrics in conjunction with binders (131). Experimental finishes using graft polymerization, in situ polymerization of phosphoms-containing vinyl monomers, or surface halogenation of the fibers also have been reported (129,130,132,133). [Pg.490]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

Raw Materials. PVC is inherently a hard and brittle material and very sensitive to heat it thus must be modified with a variety of plasticizers, stabilizers, and other processing aids to form heat-stable flexible or semiflexible products or with lesser amounts of these processing aids for the manufacture of rigid products (see Vinyl polymers, vinyl chloride polymers). Plasticizer levels used to produce the desired softness and flexibihty in a finished product vary between 25 parts per hundred (pph) parts of PVC for flooring products to about 80—100 pph for apparel products (245). Numerous plasticizers (qv) are commercially available for PVC, although dioctyl phthalate (DOP) is by far the most widely used in industrial appHcations due to its excellent properties and low cost. For example, phosphates provide improved flame resistance, adipate esters enhance low temperature flexibihty, polymeric plasticizers such as glycol adipates and azelates improve the migration resistance, and phthalate esters provide compatibiUty and flexibihty (245). [Pg.420]

Water-Vapor Permeability. Water-vapor permeabiUty depends on the polymer used for the coating layer and its stmcture. Vinyl-coated fabrics have Httie water-vapor permeabiUty due to the coating layer. Although polyurethane polymer is water-vapor permeable, urethane-coated fabrics also have low permeabiUty values due to their soHd layer stmcture. On the other hand, man-made leathers have good permeabiUty values as high as that of leather due to their porous layer stmcture. The permeabiUty of grain-type is lower than that of suede-type, influenced by finishing method. [Pg.92]

A variety of thermosetting resins are used in SMC. Polyesters represent the most volume and are available in systems that provide low shrinkage and low surface profile by means of special additives. Class A automotive surface requirements have resulted in the development of sophisticated systems that commercially produce auto body panels that can be taken direcdy from the mold and processed through standard automotive painting systems, without additional surface finishing. Vinyl ester and epoxy resins (qv) are also used in SMC for more stmcturaHy demanding appHcations. [Pg.96]

CPA. Copolymer alloy membranes (CPAs) are made by alloying high molecular weight polymeries, plasticizers, special stabilizers, biocides, and antioxidants with poly(vinyl chloride) (PVC). The membrane is typically reinforced with polyester and comes in finished thicknesses of 0.75—1.5 mm and widths of 1.5—1.8 m. The primary installation method is mechanically fastened, but some fully adhered systems are also possible. The CPA membranes can exhibit long-term flexibiHty by alleviating migration of the polymeric plasticizers, and are chemically resistant and compatible with many oils and greases, animal fats, asphalt, and coal-tar pitch. The physical characteristics of a CPA membrane have been described (15). [Pg.213]

Poly(vinyl acetate) emulsions are used to prime-coat fabrics to improve the adhesion of subsequent coatings or to make them adhere better to plastic film. Plasticized emulsions are appHed, generally by roUer-coating, to the backs of finished mgs and carpets to bind the tufts in place and to impart stiffness and hand. For upholstery fabrics woven from colored yams, PVAc emulsions may be used to bind the tufts of pile fabrics or to prevent sHppage of synthetic yams. [Pg.471]

Emulsion Polymerization. Poly(vinyl acetate) and poly(vinyl acetate) copolymer latexes prepared in the presence of PVA find wide appHcations in adhesives, paints, textile finishes, and coatings. The emulsions show exceUent stabiHty to mechanical shear as weU as to the addition of electrolytes, and possess exceUent machining characteristics. [Pg.488]

Poly(vinyl alcohol) is used as an additive to dry-wall joint cements and stucco finish compounds. Rapid cold-water solubiUty, which can be achieved with finely ground PVA, is important in many dry mixed products. Partially hydrolyzed grades are commercially available in fine-particle size under the name S-grades. The main purpose of the poly(vinyl alcohol) is to improve adhesion and act as a water-retention aid. [Pg.489]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Tile is based mainly on vinyl chloride and vinyl acetate copolymers. Some polypropylene tile systems have recendy been iatroduced. A petroleum resia is usually employed as an extender and processiag aid conventional vinyl plasticizers and stabilizers also are iacorporated. Reinforcing fibers and limestone constitute the remainder of the tile composition the fibers contribute hot strength for processiag and dimensional stabiHty ia the finished tile, limestone suppHes bulk at an economical cost. Stable pigments are also iacorporated. Siace tile is iastalled oa and below grade level, it is important that the finished product be resistant to the effects of moisture and alkaH. [Pg.335]

Most toxicity problems associated with the finished product arise from the nature of the additives and seldom from the polymer. Mention should, however, be made of poly(vinyl carbazole) and the polychloroacrylates which, when monomer is present, can cause unpleasant effects, whilst in the 1970s there arose considerable discussion on possible links between vinyl chloride and a rare form of cancer known as angiosarcoma of the liver. [Pg.104]

Because of its high cold flow, poly(vinyl acetate) is of little value in the form of mouldings and extrusions. However, because of its good adhesion to a number of substrates, and to some extent because of its cold flow, a large quantity is produced for use in emulsion paints, adhesives and various textile finishing operations. A minor proportion of the material is also converted into poly(vinyl alcohol) and the poly(vinyl acetal)s which, are of some interest to the plastics industry. [Pg.386]


See other pages where Vinyl finishes is mentioned: [Pg.23]    [Pg.419]    [Pg.382]    [Pg.99]    [Pg.487]    [Pg.490]    [Pg.314]    [Pg.495]    [Pg.526]    [Pg.93]    [Pg.335]    [Pg.37]    [Pg.260]    [Pg.363]    [Pg.428]    [Pg.531]    [Pg.535]    [Pg.260]    [Pg.464]    [Pg.471]    [Pg.489]    [Pg.302]    [Pg.555]    [Pg.298]    [Pg.299]    [Pg.356]    [Pg.365]    [Pg.462]    [Pg.395]    [Pg.134]    [Pg.705]    [Pg.412]   
See also in sourсe #XX -- [ Pg.608 ]




SEARCH



© 2024 chempedia.info