Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vadose soil

As shown in Fig. 3, CHEMGL considers 10 major well-mixed compartments air boundary layer, free troposphere, stratosphere, surface water, surface soil, vadose soil, sediment, ground water zone, plant foliage and plant route. In each compartment, several phases are included, for example, air, water and solids (organic matter, mineral matter). A volume fraction is used to express the ratio of the phase volume to the bulk compartment volume. Furthermore, each compartment is assumed to be a completely mixed box, which means all environmental properties and the chemical concentrations are uniform in a compartment. In addition, the environmental properties are assumed to not change with time. Other assumptions made in the model include continuous emissions to the compartments, equilibrium between different phases within each compartment and first-order irreversible loss rate within each compartment [38]. [Pg.55]

Of course the presence of a Hquid phase of hydrocarbon in a soil gives rise to vapor contamination in the vadose zone above the water table. This can be treated by vacuum extraction, and the passage of the exhaust gases through a biofilter (see above) can be a cheap and effective way of destroying the contaminant permanently. [Pg.30]

In Situ Air Stripping. An innovation to conventional pump and treat air stripping is in situ air stripping. Two horizontal wells are installed, one below the water table and one in the vadose zone. Air is injected in the lower well while contaminated soil vapor is extracted by vacuum through the upper well. [Pg.172]

A U.S. EPA study (41) showed that soil vapor extraction (SVE) is an effective treatment for removing volatile contaminants from the vadose zone. Sandy soils are more effectively treated than clay or soils with higher organic content because higher air flows are possible in sand and clays—organic soils tend to adsorb or retain more contaminants. Removal of volatiles is rapid in the initial phase of treatment and thereafter decreases rapidly thereafter-an important consideration in the design of air emissions control over the life of the project. [Pg.172]

R. N. Miller, "A Field-Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation ia the Vadose Zone Combining Soil Venting as an Oxygen Source with Moisture and Nutrient Addition," doctoral dissertation submitted to the Civil and Environmental Engineering Department,... [Pg.173]

Lappala, E. and G. Thompson. Detection of Groundwater Contamination by Shallow Soil Gas Sampling in the Vadose Zone and Applications. In Management of Uncontrolled Hazardous Waste Sites Proceedings, Hazardous Materials Control Research Institute,Washington, D.C., 1984. [Pg.130]

Vadose zone Unsaturated zone of soil above the groundwater, extending from the bottom of the eapillary fringe all the way to the soil surfaee. [Pg.628]

As more sensitive analytical methods for pesticides are developed, greater care must be taken to avoid sample contamination and misidentification of residues. For example, in pesticide leaching or field dissipation studies, small amounts of surface soil coming in contact with soil core or soil pore water samples taken from further below the ground surface can sometimes lead to wildly inaccurate analytical results. This is probably the cause of isolated, high-level detections of pesticides in the lower part of the vadose zone or in groundwater in samples taken soon after application when other data (weather, soil permeability determinations and other pesticide or tracer analytical results) imply that such results are highly improbable. [Pg.618]

Leaching of nuclides implanted into adjacent minerals has been suggested for the supply of Rn into the vadose zone. Where there are intermittent undersaturated conditions, i.e., in soils or rocks where the water table lowers seasonally, the low stopping power of air allows atoms ejected from minerals to be implanted across pore spaces. These atoms will then be available for leaching... [Pg.332]

Modeling of the transport of the long-lived nuclides, especially U, require knowledge of the input at the water table as a boundary condition for aquifer profiles. There are few studies of the characteristics of radionuclides in vadose zone waters or at the water table. Significant inputs are likely to occur to the aquifer due to elevated rates of weathering in soils, and this is likely to be dependent upon climatic parameters and has varied with time. Soils may also be a source of colloids and so provide an important control on colloidal transport near recharge regions. [Pg.355]

Organic acid fluorescence. In a similar manner to trace constituents, such as Mg, Sr and P, concentrations of organic acids present in speleothem calcite are sufficient to observe variation at temporal scales of less than annual in some cases (e.g.. Baker et al. 1993, Shopov et al. 1994). Organic acids (humic and fulvic) are formed in the soil by humification, and transported to the cave void by percolating waters where they are entrapped in precipitating carbonates. Under certain circumstances, where precipitation patterns are strongly seasonal and the nature of vadose percolation is such that seasonal mixing is incomplete, bands with different luminescent intensities can be differentiated after excitation with UV radiation. In other cases, bands are not observable but secular... [Pg.447]

Soil vapor extraction (SVE) is a relatively new yet widely applied technology for the remediation of soils contaminated with volatile organic compounds (VOC) in the unsaturated zone above the water table (vadose zone). The process consists of generating an airstream through the contaminated soil subsurface in order to enhance the volatilization of organic contaminants and thus remove them from the soil matrix.913... [Pg.523]

The airflow equations presented above are based on the assumption that the soil is a spatially homogeneous porous medium with constant intrinsic permeability. However, in most sites, the vadose zone is heterogeneous. For this reason, design calculations are rarely based on previous hydraulic conductivity measurements. One of the objectives of preliminary field testing is to collect data for the reliable estimation of permeability in the contaminated zone. The field tests include measurements of air flow rates at the extraction well, which are combined with the vacuum monitoring data at several distances to obtain a more accurate estimation of air permeability at the particular site. [Pg.530]

A moisture ranging between 25 and 85% of complete saturation is considered to be adequate for soil bioremediation.12 In many cases, the soil moisture in the vadose zone is below or at the lower end of this range, so the addition of water is often needed to maintain good operating conditions. [Pg.539]

Introduction of the flushing solution may occur within the vadose zone, the saturated zone, or both. Flushing solutions may consist of plain water, or surfactants, co-solvents, acids, bases, oxidants, chelants, and solvents. The infiltrating flushing solution percolates through the soil and soluble compounds present in the soil are dissolved. The elutriate is pumped from the bottom of the contaminated zone into a water treatment system to remove pollutants. The process is carried out until the residual concentrations of contaminants in the soil satisfy given limits. [Pg.563]

Soils and vadose zone information, including soil characteristics (type, holding capacity, temperature, biological activity, and engineering properties), soil chemical characteristics (solubility, ion specification, adsorption, leachability, cation exchange capacity, mineral partition coefficient, and chemical and sorptive properties), and vadose zone characteristics (permeability, variability, porosity, moisture content, chemical characteristics, and extent of contamination)... [Pg.601]

Subsurface formations can be divided into the overburden (unconsolidated) and bedrock according to its solidarity. The upper subsurface can be further divided into the unsaturated zone and the saturated zone depending on pore structure and moisture saturation. The saturated zone is the zone in which the voids in the rock or soil are filled with water at a pressure greater than atmospheric. The water table is at the top of a saturated zone in an unconfined aquifer. The unsaturated zone is the zone between the land surface and the water table, and is also called the zone of aeration or the vadose zone. The pore spaces contain water at less than atmospheric pressure, air, and other gases. This zone is unsaturated except during periods of heavy infiltration. [Pg.694]

SVE has been an effective technique for removing VOCs such as TCE and some petroleum compounds from the vadose zone of contaminated soil.72 The following presents some of the newly developed technologies. [Pg.735]

May cause a lateral spread of dissolved or separate phase contaminant plume Contamination may be transferred from groundwater to die vadose zone Has limited applicability at sites with confined aquifers Low soil permeability or other heterogeneous conditions may reduce effectiveness... [Pg.1001]

In an SVE system, the primary mechanism for contaminant removal from the soil to the vadose zone is the volatilization of contaminants present in the pure or adsorbed phase onto soil into the vapor phase, as the vapor phase is continually extracted. The property that shows the extent to which this transfer can take place during SVE is vapor pressure, which provides an indication of the extent to which each contaminant will partition between the liquid phase and the vapor state at equilibrium conditions. Generally, a contaminant with a greater vapor pressure more readily volatilizes than one with a lesser vapor pressure. [Pg.1007]

Adams PL, Daniel TC, Nichols DJ, Pote DH, Scott HD (1994) Poultry Litter and Manure Contributions to Nitrate Leaching through the Vadose Zone. Soil Sci Soc Am J 58 1206-1211... [Pg.294]

Vaughan PJ, Suarez DL. Constant capacitance model computation of boron speciation for varying soil water content. Vadose Zone J. 2003 2 253-258. [Pg.150]


See other pages where Vadose soil is mentioned: [Pg.297]    [Pg.584]    [Pg.309]    [Pg.182]    [Pg.297]    [Pg.584]    [Pg.309]    [Pg.182]    [Pg.171]    [Pg.172]    [Pg.123]    [Pg.427]    [Pg.230]    [Pg.612]    [Pg.335]    [Pg.407]    [Pg.444]    [Pg.448]    [Pg.532]    [Pg.620]    [Pg.620]    [Pg.627]    [Pg.736]    [Pg.1006]    [Pg.1009]    [Pg.1046]    [Pg.50]    [Pg.104]    [Pg.60]    [Pg.829]   
See also in sourсe #XX -- [ Pg.584 ]




SEARCH



Soils vadose zone

Vadose

Vadose Zone Soil Contamination

Water Flow in Soils and the Vadose Zone

© 2024 chempedia.info