Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

United States antioxidants

In the United States antioxidant use is subject to regulation under the Federal Food, Drug, and Cosmetic Act.8 Antioxidants for food products are also regulated under the Meat Inspection Act, the Poultry Inspection Act, and various state laws. Antioxidants permitted for use in foods are divided into two groups ... [Pg.291]

Heico Chemicals is the only producer of acetamide in the United States. Small amounts are imported from Europe and Asia. It is shipped in 32-L (35-gal) dmms weighing about 80 kg. Acetamide appears to have a wide spectmm of appHcations. It suppresses acid buildup in printing inks, lacquers, explosives, and perfumes. It is a mild moisturi2er and is used as a softener for leather, textiles, paper, and certain plastics. It finds some appHcations in the synthesis of pharmaceuticals, pesticides, and antioxidants for plastics. [Pg.73]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

The chemical industry manufactures a large number of antioxidants (qv) as well as uv stabilizers and their mixtures with other additives used to facilitate resin processing. These companies include American Cyanamid, BASE, Ciba—Geigy, Eastman Chemical, Elf Atochem, Enichem, General Electric, Hoechst—Celanese, Sandoz, and Uniroyal, among others. The combined market for these products in the United States exceeded 900 million in 1994 and will reach 1 billion in the year 2000. [Pg.380]

The use of vitamins in humans consumes ca 40% of vitamins made worldwide. The majority of the vitamins, particularly in countries outside the United States, are used in animal husbandry. It is well estabUshed (21) that vitamins are critical to animal productivity, especially under confined, rapid growth conditions. Newer information (22) has shown that vitamin E added to catde feed has the additional effect of significantly prolonging beef shelf life in stores. Additional appHcations of vitamins exist. A small but growing market segment involves cosmetics (qv) (23). The use of the chemical properties of the vitamins, particularly as antioxidants (qv) in foods and, more recently, in plastics (vitamin E (24)), has emerged as a growing trend. [Pg.9]

Antioxidants are used to retard the reaction of organic materials with atmospheric oxygen. Such reaction can cause degradation of the mechanical, aesthetic, and electrical properties of polymers loss of flavor and development of rancidity ia foods and an iacrease ia the viscosity, acidity, and formation of iasolubles ia lubricants. The need for antioxidants depends upon the chemical composition of the substrate and the conditions of exposure. Relatively high concentrations of antioxidants are used to stabilize polymers such as natural mbber and polyunsaturated oils. Saturated polymers have greater oxidative stabiUty and require relatively low concentrations of stabilizers. Specialized antioxidants which have been commercialized meet the needs of the iadustry by extending the useflil Hves of the many substrates produced under anticipated conditions of exposure. The sales of antioxidants ia the United States were approximately 730 million ia 1990 (1,2). [Pg.222]

Commercial Antioxidants Table 4 includes the main classes of antioxidants sold in the United States and the suppHer s suggested apphcations. Some of these are mixtures rather than single substrates. This is especially tme of alkylated amines and alkylated phenols. The extent of alkylation and the olefins used for alkylation can vary among manufacturers. Table 4 is not a complete listing of available antioxidants in the United States. [Pg.234]

Monochlorobenzene. The largest use of monochlorobenzene in the United States is in the production of nitrochlorobenzenes, both ortho and para, which are separated and used as intermediates for mbber chemicals, antioxidants (qv), dye and pigment intermediates, agriculture products, and pharmaceuticals (Table 5). Since the mid-1980s, there have been substantial exports of both o-nitrochlorobenzene, estimated at 7.7 million kg to Europe and -nitrochlorobenzene, estimated at 9.5 million kg to the Far East. Solvent use of monochlorobenzene accounted for about 28% of the U.S. consumption. This appHcation involves solvents for herbicide production and the solvent for diphenylmethane diisocyanate manufacture and other chemical intermediates. [Pg.50]

In the Unites States, the daily intake of 3-carotene is around 2 mg/day Several epidemiological studies have reported that consumption of carotenoid-rich foods is associated with reduced risks of certain chronic diseases such as cancers, cardiovascular disease, and age-related macular degeneration. These preventive effects of carotenoids may be related to their major function as vitamin A precursors and/or their actions as antioxidants, modulators of the immune response, and inducers of gap-junction communications. Not all carotenoids exert similar protective effects against specific diseases. By reason of the potential use of carotenoids as natural food colorants and/or for their health-promoting effects, research has focused on better understanding how they are absorbed by and metabolized in the human body. [Pg.161]

Cyanidin is the most common anthocyanin in foods. In addition, anthocyanins are stabilized by the formation of complexes with other flavonoids (co-pigmentation). In the United States, the daily anthocyanin consumption is estimated at about 200 mg. Several promising studies have reported that consumption of anthocyanin-rich foods is associated with reductions of the risks of cancers - and atherosclerosis and with preventive effects against age-related neuronal and behavioral declines. These beneficial effects of anthocyanins might be related to their reported biological actions such as modulators of immune response and as antioxidants. Knowledge of anthocyanin bioavailability and metabolism is thus essential to better understand their positive health effects. [Pg.165]

Amination of aromatic nitro compounds is a very important process in both industry and laboratory. A simple synthesis of 4-aminodiphenyl amine (4-ADPA) has been achieved by utilizing a nucleophilic aromatic substitution. 4-ADPA is a key intermediate in the rubber chemical family of antioxidants. By means of a nucleophibc attack of the anilide anion on a nitrobenzene, a o-complex is formed first, which is then converted into 4-nitrosodiphenylamine and 4-nitrodiphenylamine by intra- and intermolecular oxidation. Catalytic hydrogenation finally affords 4-ADPA. Azobenzene, which is formed as a by-product, can be hydrogenated to aniline and thus recycled into the process. Switching this new atom-economy route allows for a dramatic reduction of chemical waste (Scheme 9.9).73 The United States Environmental Protection Agency gave the Green Chemistry Award for this process in 1998.74... [Pg.316]

Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE and Prior RL. 2004. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52(12) 4026-4037. [Pg.307]

The ASTM D-4814 gasoline specification requiring an existent gum rating of <5 mg/100 mL of fuel has been established for all gasoline sold in the United States. A similar existent gum rating is in effect worldwide. If gasoline does not meet this specification, the addition of antioxidants will not reduce the existent gum level. Typically, existent gum levels cannot be reduced by chemical additive treatment. [Pg.177]

Figure 6.5 shows the structures of tra 5-cinnamic acid and four cinnamic acid derivatives (phenolic compounds) reported to be present in potatoes. Because potatoes are one of our major food plants, we validated with the aid of HPLC and LC/MS the content and distribution of antioxidative phenolic compounds in parts of the potato plant, in potato tubers, in the peel and flesh of tubers, in potatoes sold commercially in Korea and the United States, and in home-processed potatoes. The following discussion, based on our own studies, is followed by a brief overview of analytical methods for potato phenolic compounds by other investigators. [Pg.139]

Huang, Z., Wang, B., Eaves, D. H., Shikany, J. M., Pace, R. D. (2007). Total phenolics and antioxidant capacity of indigenous vegetables in the southeast United States Alabama Collaboration for Cardiovascular Equality Project Int. J. Food Sci Nutr., 1-9. [Pg.158]

Citric acid and its citrate compounds are widely used in hundreds of applications. Global production of citric acid in 2005 was 1.6 million tons, with China producing approximately 40% of the world supply. In the United States, approximately 65% of citric acid use is in the food and beverage industry. Citric acid is used as an acidulant to impart tartness, to control pH, as a preservative and antioxidant, as a metal chelator, and to stabilize color and taste. Citrate salts can be used as mineral and metal dietary supplement for example, calcium citrate... [Pg.86]

Among the butylenes, isobutylene has become one of the important starting materials for the manufacture of polymers and chemicals. There are many patents that describe the use of isobutylene or its derivatives to produce insecticides, antioxidants, elastomers, additives for lubricating oils, adhesives, sealants, and caulking compounds. Table 9 shows the use pattern of butylenes in the United States. [Pg.370]

In terms of human dietary requirements, much of the wheat for breadmaking in the United States is produced in selenium-adequate sections of the country. Bread is generally a good source of dietary selenium, Selenomethionine decomposes lipid peroxides and inhibits in vivo lipid peroxidation in tissues of vitamin-E-deficient chicks. Selenocysdne catalyzes the decomposition of organic hydroperoxides. Selenoproteins show a high degree of inhibition of lipid peroxidation in livers of sheep, chickens, and rats, Thus, some forms of selenium exhibit in vivo antioxidant behavior,... [Pg.1465]

A special type of polymeric antioxidant is anoxomer, which consists of 1,4-benzenediol, 2-(l,l-dimethylethyl)-polymer with diethylbenzene, 4-(l,l-dimethyl-ethyl)phenol, 4-methoxy-phenol, 4,4 -(l-methylethylidene)bis(phenol), and 4-methylphenol prepared by condensation polymerization of divinylbenzene (m- and p-) with tert-butylhydroquinone, tert-butylphenol, hy-droxyanisole, p-cresol, and 4,4 -isopropylidenediphenol. Total monomers, dimers, and trimers below 500 are not more than 1%. Anoxomer is permitted in the United States as an antioxidant in food at a level of not more than 5 ppm of fat and oil content of the food. [Pg.599]


See other pages where United States antioxidants is mentioned: [Pg.21]    [Pg.494]    [Pg.276]    [Pg.378]    [Pg.219]    [Pg.304]    [Pg.234]    [Pg.298]    [Pg.316]    [Pg.304]    [Pg.365]    [Pg.116]    [Pg.682]    [Pg.303]    [Pg.410]    [Pg.790]    [Pg.1018]    [Pg.365]    [Pg.219]    [Pg.272]    [Pg.279]    [Pg.224]    [Pg.212]    [Pg.4]    [Pg.2]    [Pg.277]    [Pg.112]    [Pg.378]    [Pg.596]    [Pg.21]   
See also in sourсe #XX -- [ Pg.4 , Pg.291 ]




SEARCH



© 2024 chempedia.info