Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Type of columns

Packed columns. Packed columns were introduced by Martin in 1952 [33]. Since then, they have been developed for application to compounds derived from biological sources [34,35] and are now the most widely used columns for gas phase chromatography in this field. [Pg.15]

Important factors contributing to this are the availability of a range of good thermostable liquid phases, methods of coating appropriate supports [35] and the simplicity of use. [Pg.15]

Although many hundreds of stationary phases are available the majority of separations are carried out on only a handful of different phases. The choice of phase is, of course, dependent on the components to be resolved but consideration has to be given to the column bleed rate. The common phases and details of bleed characteristics are described elsewhere [11]. [Pg.15]

Several types of surface modification have been employed [37,38] such as etching or deposition of very fine inert supports before application of the phase. The latter are referred to as support coated open tubular (SCOT) or by others as porous layer open tubular (PLOT) columns. They have a higher sample capacity than liquid coated columns due to the greater amount of phase per unit length. Several recent papers have described modified methods of column preparation [39-41] using Silanox 101 as the support. [Pg.16]


Chiral separations present special problems for vaUdation. Typically, in the absence of spectroscopic confirmation (eg, mass spectral or infrared data), conventional separations are vaUdated by analysing "pure" samples under identical chromatographic conditions. Often, two or more chromatographic stationary phases, which are known to interact with the analyte through different retention mechanisms, are used. If the pure sample and the unknown have identical retention times under each set of conditions, the identity of the unknown is assumed to be the same as the pure sample. However, often the chiral separation that is obtained with one type of column may not be achievable with any other type of chiral stationary phase. In addition, "pure" enantiomers are generally not available. [Pg.68]

Caprolactam Extraction. A high degree of purification is necessary for fiber-grade caprolactam, the monomer for nylon-6 (see Polyamides). Cmde aqueous caprolactam is purified by solvent extractions using aromatic hydrocarbons such as toluene as the solvent (233). Many of the well-known types of column contactors have been used a detailed description of the process is available (234). [Pg.79]

Chromatographic methods including thin-layer, hplc, and gc methods have been developed. In addition to developments ia the types of columns and eluents for hplc appHcations, a significant amount of work has been done ia the kiads of detectioa methods for the vitamin. These detectioa methods iaclude direct detectioa by uv, fluoresceace after post-column reduction of the quiaone to the hydroquinone, and electrochemical detection. Quantitative gc methods have been developed for the vitamin but have found limited appHcations. However, gc methods coupled with highly sensitive detection methods such as gc/ms do represent a powerful analytical tool (20). [Pg.152]

The concepts of shp velocity and characteristic velocity are useful in defining the Flooding point and operational regions of different types of column contactors. The shp (or relative) velocity is given by the equation ... [Pg.1475]

Column selection (should the column selection not be obvious or specified, calculations must be carried out for the different types of columns and the final based on economic considerations)... [Pg.2185]

Types of columns and packings. A slow distillation rate is necessary to ensure that equilibrium conditions operate and also that the vapour does not become superheated so that the temperature rises above the boiling point. Efficiency is improved if the column is heat insulated (either by vacuum jacketing or by lagging) and, if necessary, heated to Just below the boiling point of the most volatile component. Efficiency of separation also improves with increase in the heat of vaporisation of the liquids concerned (because fractionation depends on heat equilibration at multiple liquid-gas boundaries). Water and alcohols are more easily purified by distillation for this reason. [Pg.11]

Equation (21) applies to all types of columns each requiring a different constant (wm) This constant is partly determined by the geometry of the distribution system... [Pg.256]

It is a common procedure to assume certain conditions for the chromatographic system and operating conditions and, as a result, simplify equations (20) and (21). However, in many cases the assumptions can easily be over-optimistic, to say the least. It is necessary, therefore, to carefully consider the conditions that may allow such simplifying procedures and take steps to ensure that such conditions are carefully met when such expressions are used in practice. Now, the relative magnitudes of the resistance to mass transfer terms will vary with the type of columns (packed or capillary), the type of chromatography (GC or LC) and the type of particle, i.e., porous or microporous (diatomaceous support or silica gel). [Pg.278]

Thus, for significant values of (k") (unity or greater) the optimum mobile phase velocity is controlled primarily by the ratio of the solute diffusivity to the column radius and, secondly, by the thermodynamic properties of the distribution system. However, the minimum value of (H) (and, thus, the maximum column efficiency) is determined primarily by the column radius, secondly by the thermodynamic properties of the distribution system and is independent of solute diffusivity. It follows that for all types of columns, increasing the temperature increases the diffusivity of the solute in both phases and, thus, increases the optimum flow rate and reduces the analysis time. Temperature, however, will only affect (Hmin) insomuch as it affects the magnitude of (k"). [Pg.282]

To realistically evaluate the effect of extra-column dispersion on column performance, it is necessary to evaluate the maximum extra-column dispersion that can be tolerated by different types of columns. Such data will indicate the level to which dispersion in the detector and its associated conduits must be constrained to avoid abrogating the chromatographic resolution. [Pg.288]

Table 1. The Permissible Extra-column Dispersion for a Range of Different Types of Column... Table 1. The Permissible Extra-column Dispersion for a Range of Different Types of Column...
The standard deviation of the extra-column dispersion is given as opposed to the variance because, as it represents one-quarter of the peak width, it is easier to visualize from a practical point of view. It is seen the values vary widely with the type of column that is used, (ag) values for GC capillary columns range from about 12 pi for a relatively short, wide, macrobore column to 1.1 pi for a long, narrow, high efficiency column. [Pg.289]

Extra-column dispersion can arise in the sample valve, unions, frits, connecting tubing, and the sensor cell of the detector. The maximum sample volume, i.e., that volume that contributes less than 10% to the column variance, is determined by the type of column, dimensions of the column and the chromatographic characteristics of the solute. In practice, the majority of the permitted extra-column dispersion should... [Pg.311]

The Shodex GPC KF-600 series is packed with 3- im styrene-divinylbenzene copolymer gels in a column having a volume of about one-third compared to standard-types of columns, which are best suited for reducing the organie solvents eonsumption, shortening the analysis time, and lowering the detection limit (Table 6.5). [Pg.181]

Three different types of columns packed with gels of different pore sizes are available. Columns should be selected that are suitable for the molecular weight range of specific samples, as each type has a different exclusion limit (Fig. 6.41, page 215). Bovine serum albumin (BSA), myoglobin, and lysozyme show good peak shapes using only 100 mM of sodium phosphate buffer as an eluent. There is no need to add any salt to the eluent to reduce the ionic interaction between protein and gel. [Pg.205]

Discussing pore size selection of columns leads directly to the issue of using single porosity columns or so-called linear or mixed-bed columns, which contain mixtures of different pore sizes in a single column (3,19). Both types of columns have advantages and disadvantages, as shown in Table 9.6. [Pg.275]

Gels made in this way have virtually no usable porosity and are called Jordi solid bead packings. They can be used in the production of low surface area reverse phase packings for fast protein analysis and in the manufacture of hydrodynamic volume columns as well as solid supports for solid-phase syntheses reactions. An example of a hydrodynamic volume column separation is shown in Fig. 13.2 and its calibration plot is shown in Fig. 13.3. The major advantage of this type of column is its ability to resolve very high molecular weight polymer samples successfully. [Pg.369]

The selection of the right gel-permeation chromatography (GPC) column or column combination for a special task is a multistage procedure. First, a decision about the type of column has to be made according to the polymer samples in question ... [Pg.429]

This chapter describes the use of three commercially available SEC column types for the characterization of nonionic, anionic, and cationic, synthetic water-soluble polymers. These include TSK-PW, Synchropak, and CATSEC columns. Specific examples and experimental procedures are discussed for each type of column. Elowever, the major emphasis is on the use of TSK-PW columns due to their broad applicability for a variety of water-soluble polymers. [Pg.560]

Specific polymers discussed in this chapter and the type of column used for their characterization are summarized in Table 20.1. The polymers are categorized as nonionic, anionic, or cationic. The nomenclature (acronyms) used for the different polymer types are also listed in Table 20.1. [Pg.561]

To determine the column (with trays) diameter, an approach [130] is to (1) assume 0 hours (2) solve for V, Ib/hr vapor up the column at selected, calculated, or assumed temperature and pressure (3) calculate column diameter using an assumed reasonable vapor velocity for the type of column internals (see section in this volume on Mechanical Designs for Tray Performance ). [Pg.50]

Perry et al. [85] point out that packed columns are more dependent on liquid distribution than trayed columns, as can be appreciated by the differences in the way the liquid must flow down the two types of columns. Liquid distribution quality is measured or described as [85] ... [Pg.268]

Fair reports that the data for mass transfer in spray, packed, and tray columns can be used for heat-transfer calculations for these columns. The pressure drop in these types of columns is usually quite low. [Pg.249]

Although many types of column have been developed for gas chromatography, they may be divided into two major groups ... [Pg.238]

The easiest way for an analyst to obtain small quantities of a component of a mixture is to overload an analytical column. In order to exercise this technique, the solute of interest must be well separated from its closest neighbor. The column can then be overloaded with sample until the peak dispersion resulting from the overload, causes the two peaks to touch at their base. There are two types of column overload, volume overload and mass overload. In practice, it is often advantageous to employ a combination of both methods and a simple procedure for doing this will be given overleaf. [Pg.117]

The analysis demonstrates the elegant use of a very specific type of column packing. As a result, there is no sample preparation, so after the serum has been filtered or centrifuged, which is a precautionary measure to protect the apparatus, 10 p.1 of serum is injected directly on to the column. The separation obtained is shown in figure 13. The stationary phase, as described by Supelco, was a silica based material with a polymeric surface containing dispersive areas surrounded by a polar network. Small molecules can penetrate the polar network and interact with the dispersive areas and be retained, whereas the larger molecules, such as proteins, cannot reach the interactive surface and are thus rapidly eluted from the column. The chemical nature of the material is not clear, but it can be assumed that the dispersive surface where interaction with the small molecules can take place probably contains hydrocarbon chains like a reversed phase. [Pg.225]

Five types of columns are routinely used in gas chromatography classical packed columns with internal diameters greater than 2 mm containing particles in the range 100 to 250 micrometers micropacked columns having diameters less than 1 mm with a packing density similar to classical packed columns (dp/d less than 0.3, where dp is the particle diameter and d the column diameter) packed capillary lumns have a column diameter less than 0.5 mm and a packing density less than classical packed columns (dp/d 0.2-0.3) SCOT columns (support-coated open... [Pg.23]


See other pages where Type of columns is mentioned: [Pg.25]    [Pg.154]    [Pg.100]    [Pg.1284]    [Pg.55]    [Pg.63]    [Pg.63]    [Pg.76]    [Pg.77]    [Pg.1487]    [Pg.1488]    [Pg.1993]    [Pg.1994]    [Pg.9]    [Pg.336]    [Pg.360]    [Pg.433]    [Pg.140]    [Pg.76]    [Pg.100]    [Pg.207]    [Pg.6]    [Pg.101]   


SEARCH



Types of Bubble Columns

Types of columns and packings

© 2024 chempedia.info