Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Two-Layer Electrode

A GDL is also an important component of the AFC. For these fuel cells, the GDLs are usually made by a rolling procedure similar to that used in the paper industry. The activated carbon/PTFE mixture is rolled onto a current collector made of planar nickel mesh. By using GDL and a two-layer electrode structure, the Pt loading in the AFC can be reduced to 0.3 mg cm-2 [76],... [Pg.404]

As reported by Justi, Pilkuhn, Scheibe, and Winsel [20] for the two-layer electrode, the current of the H2 oxidation at constant potential or the potential at constant current increase initially with pressure, pass through a maximum and decrease gradually. This is demonstrated in Fig. 96. The current density at C/=0.18V is plotted as a function of the pressure difference Ap across the porous structure for different... [Pg.250]

PSHENiCHNiKOV [69] suggested that the electrochemical reactions occur in the film of electrolyte covering the walls of the macropores of a two-layer electrode (see Fig. 95). Since many micropores intersect the macropores, the electrolytic resistance of the solution film is shunted by the much smaller electrolytic resistance of the micropores which are... [Pg.267]

The X axis is parallel to the axis of the macropores, q designates the sum of the areas of the mouths of the micropores, and A is the sum of the perimeters of the macropores. The origin of the x axis is at the external electrolyte/electrode boundary. This can be done since the influence of the thin layer of the two-layer electrode is negligible [70]. A linear dependence between i and cp... [Pg.268]

Samples that contain suspended matter are among the most difficult types from which to obtain accurate pH readings because of the so-called suspension effect, ie, the suspended particles produce abnormal Hquid-junction potentials at the reference electrode (16). This effect is especially noticeable with soil slurries, pastes, and other types of colloidal suspensions. In the case of a slurry that separates into two layers, pH differences of several units may result, depending on the placement of the electrodes in the layers. Internal consistency is achieved by pH measurement using carefully prescribed measurement protocols, as has been used in the determination of soil pH (17). [Pg.467]

The anode and cathode chambers are separated by a cation-permeable fluoropolymer-based membrane (see Membrane technology). Platinum-electroplated high surface area electrodes sold under the trade name of TySAR (Olin) (85,86) were used as the anode the cathode was formed from a two-layer HasteUoy (Cabot Corp.) C-22-mesh stmcture having a fine outer 60-mesh stmcture supported on a coarse inner mesh layer welded to a backplate. The cell voltage was 3.3 V at 8 kA/m, resulting ia a 40% current efficiency. The steady-state perchloric acid concentration was about 21% by weight. [Pg.67]

Figure 13-4. Encigy level diagnim of a single-layer OLED, where the organic malerial is depicted as a fully depleted semiconductor. The valence band Ey corresponds to the HOMO and the conduction band Ec corresponds to the LUMO. Tile Fermi levels of the two metal electrodes are marked as Et-. Upon contact a built-in potential is established and needs to be compensated for, before the device will begin to operating. Figure 13-4. Encigy level diagnim of a single-layer OLED, where the organic malerial is depicted as a fully depleted semiconductor. The valence band Ey corresponds to the HOMO and the conduction band Ec corresponds to the LUMO. Tile Fermi levels of the two metal electrodes are marked as Et-. Upon contact a built-in potential is established and needs to be compensated for, before the device will begin to operating.
In an alternative procedure designed to deal with minute volumes of liquid, Walter38 set up a layer cell based upon the technique employed in instant colour photographic films, Such a cell designed to determine potassium ions made use of two layer assemblies terminating in valinomycin electrodes, so that with a standard potassium chloride solution added to one assembly, and the... [Pg.563]

Mechanical strength becomes an important criterion, because wound cells (spiral-type construction), in which a layer of separator material is spirally wound between each two electrodes, are manufactured automatically at very high speed. Melt-blown polypropylene fleeces, with their excellent tensile properties, offer an interesting option. Frequently two layers of the same or different materials are used, to gain increased protection against shorts for button cells the use of three layers, even, is not unusual. Nevertheless the total thickness of the separation does not exceed 0.2 - 0.3 mm. For higher-temperature applications (up to about 60 °C) polypropylene fleeces are preferred since they offer a better chemical stability, though at lower electrolyte absorption [ 114"]. [Pg.284]

In the first papers dealing with SEI electrodes it was suggested that the passivating layer consists of one or two layers [1, 2], The first one (the SEI) is thin and compact the second (if it exists), on top of the SEI, is a more porous, or structurally open, layer that suppresses the mass transport of ions in the electrolyte filling the pores of this layer. [Pg.443]

The electrodes (c and d) are interspaced between the two layers of separator, and the layers are wound as tightly as possible to ensure good interfacial contact. [Pg.554]

A fuel cell consists of an ion-conducting membrane (electrolyte) and two porous catalyst layers (electrodes) in contact with the membrane on either side. The hydrogen oxidation reaction at the anode of the fuel cell yields electrons, which are transported through an external circuit to reach the cathode. At the cathode, electrons are consumed in the oxygen reduction reaction. The circuit is completed by permeation of ions through the membrane. [Pg.77]

The authors [35] emphasize that their result regarding the first HgS monolayer, which involves reversible underpotential adsorption, suggests that nucleation cannot be considered as a universal mechanism for the formation of anodic films. Analogous conclusions have been inferred for cathodic HgSe films electrodeposited on mercury electrode by the reduction of selenous acid [37] the first monolayer appeared to be reversibly adsorbed, while formation of the following two layers was preceded by nucleation. [Pg.90]

Two aqueous phases separated by a liquid membrane, EM, of nitrobenzene, NB, were layered in a glass tube, which was equipped with Pt counterelectrodes in W1 and W2 and reference electrodes in three phases as in Eq. (1). Reference electrodes set in W1 and W2 were Ag/AgCl electrodes, SSE, and those in LM were two tetraphenylborate ion selective electrodes [26,27], TPhBE, of liquid membrane type. The membrane current, /wi-w2 was applied using two Pt electrodes. The membrane potential, AFwi-wi recorded as the potential of SSE in W2 vs. that in W1. When a constant current of 25 /aA cm was applied from W1 to W2 in the cell given as Eq. (1), the oscillation of membrane potential was observed as shown in curve 1 of Fig. 1. The oscillation of AFwi-wi continued for 40 to 60 min, and finally settled at ca. —0.40 V. [Pg.610]

A definite decomposition voltage occurs for the following reason. As soon as there is a potential difference between the electrodes, H+ ions move to the cathode and Cl ions to the anode. The ions are discharged, forming layers of adsorbed gas on the inert metal surfaces. This essentially amounts to having a hydrogen electrode and a chlorine electrode in place of the two platinum electrodes. The outcome is a typical chemical cell ... [Pg.679]

Investigation of intermediates of an electrode reaction and rapid determination of the electrochemical equivalents may be achieved by means of thin-layer electrolytic cell only about 10 im thick, consisting of two platinum electrodes which are the opposing spindle faces of an ordinary micrometer. [Pg.316]

An optically transparent thin-layer electrode (OTTLE) study18 revealed that the visible spectra of the reduced forms of [Ru(bipy)3]2+ derivatives can be separated into two classes. Type A complexes, such as [Ru(bipy)3]2+, [Ru(L7)3]2+, and [Ru(L )3]2+ show spectra on reduction which contain low-intensity (e< 2,500 dm3 mol-1 cm-1) bands these spectra are similar to those of the reduced free ligand and are clearly associated with ligand radical anions. In contrast, type B complexes such as [Ru(L8)3]2+ and [Ru(L9)3]2+ on reduction exhibit spectra containing broad bands of greater intensity (1,000 [Pg.584]

The air gas-diffusion electrode developed in this laboratory [5] is a double-layer tablet (thickness ca.1.5 mm), which separates the electrolyte in the cell from the surrounding air. The electrode comprises two layers a porous, from highly hydrophobic, electrically conductive gas layer (from the side of the air) and a catalytic layer (from the side of the electrolyte). The gas layer consists of a carbon-based hydrophobic material produced from acetylene black and PTFE by a special technology [6], The high porosity of the gas layer ensures effective oxygen supply into the reaction zone of the electrode simultaneously the leakage of the electrolyte through the electrode... [Pg.127]

In Moscow Power Engineering Institute (TU) portable air aluminum batteries with saline electrolyte were developed [7, 18, and 20], In our devices, the air electrodes consist of two layers. Diffusion layer contains PTFE, carbon black and metal screen active layer consists of activated carbon and PTFE. At 293 K and the range of current density 2-25 mA/ cm2 dependence of cathode potential E (in H-scale) upon current density J (Figure 2) may by written by the Tafel equation (12). [Pg.165]


See other pages where Two-Layer Electrode is mentioned: [Pg.249]    [Pg.250]    [Pg.250]    [Pg.267]    [Pg.267]    [Pg.39]    [Pg.249]    [Pg.250]    [Pg.250]    [Pg.267]    [Pg.267]    [Pg.39]    [Pg.681]    [Pg.596]    [Pg.245]    [Pg.579]    [Pg.292]    [Pg.417]    [Pg.371]    [Pg.470]    [Pg.471]    [Pg.498]    [Pg.538]    [Pg.546]    [Pg.59]    [Pg.115]    [Pg.286]    [Pg.372]    [Pg.22]    [Pg.210]    [Pg.1]    [Pg.812]    [Pg.683]    [Pg.484]    [Pg.75]    [Pg.305]    [Pg.132]   


SEARCH



Double-Layer Specific Capacitance Characterization Using Two-Electrode Test Cell

Electrode Coated with Two Inert Porous Layers

Electrodes layers

Two-layer

© 2024 chempedia.info