Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastic matrices polyethylene

The ductility of GRT-polyethylene blends drastically decreases at ground rubber concentration in excess of 5%. The inclusion of hnely ground nitrile rubber from waste printing rollers into polyvinyl chloride (PVC) caused an increase in the impact properties of the thermoplastic matrix [76]. Addition of rubber powder that is physically modihed by ultrasonic treatment leads to PP-waste ethylene-propylene-diene monomer (EPDM) powder blends with improved morphology and mechanical properties [77]. [Pg.1050]

Thermoplastic materials for solidification, such as bitumen, polyethylene, and paraffin, are mixed with dried wastes at elevated temperatures. The mixtures solidify when they cool. The hardened mixtures may be placed into containers prior to disposal. One group of materials not suitable for this process, however, includes organic wastes that can dissolve the thermoplastic matrix and thus prevent solidification. Chlorates, perchlorates, and nitrates in high concentrations can deteriorate bitumen. Radioactive wastes can be immobilized by this method. [Pg.166]

The work carried out by Kalaprasad and Thomas [34] shows different chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane, and peroxides improving the interfacial adhesion and compatibility between the fiber and matrix. A polyethylene thermoplastic matrix with sisal and glass hybrid composites was developed. The results showed that in all treatments, tensile strength increased about 10-30% and peroxide treatment showed maximum tensile strength and Young s modulus [34]. [Pg.637]

Shebani et al. [20] noted that removing extractives improved the thermal stability of different wood species. Therefore, using extracted wood for the production of wood-plastic composite (WPCs) would improve the thermal stability of WPCs. Because wood and other bio-fibres easily undergo thermal degradation beyond 200°C, thermoplastic matrix used in the composites is mainly limited to low-melting-temperature commodity thermoplastics like polyethylene (PE) and polypropylene (PP). However, the inherently unfavourable thermomechanical and creep properties of the polyolefin matrix limit some structural applications of the materials. [Pg.668]

Ceraplast n. Any reinforced thermoplastic, particularly polyethylene, containing ceramic or mineral particles that have been dispersed in the polymer melt to their ultimate size (no agglomerates) and completely enveloped in resin. Bonding of the envelope to the filler particles and the matrix polymer is aided by the addition of a small percentage of reactive monomer or resin precursor. It is believed that, in the extremely thin transition envelope, there is a smooth gradient of modulus from that of the particulate material to that of the polymer. The mechanical properties of cera-plasts are superior to those in which the same fillers have been conventionally incorporated. [Pg.175]

Like the pultrusion process, the selection of a suitable thermoplastic matrix material mainly depends on the desired mechanical properties and the desired long-term service temperature. The range of usable matrix materials starts with standard polymers such as polyethylene (PE) or polypropylene (PP) and ends with high performance polymers such as polyetherimide (PEI) or poyletheretherketone (PEEK). Recent developments have shown that the processing of reactive thermoplastic materials is possible as well (CBT). For some physical properties of common matrix materials see Table 8.2. °... [Pg.226]

Starch can be nsed as a natural filler in traditional plastics (11,23-33) and par-ticnlarly in polyolefins. When blended with starch beads, polyethylene films (34) biodeteriorate on exposure to a soil environment. The microbial consumption of the starch component, in fact, leads to increased porosity, void formation, and the loss of integrity of the plastic matrix. Generally (32,35-38), starch is added at fairly low concentrations (6-15%) the overall disintegration of these materials is achieved by the use of transition-metal compounds, soluble in the thermoplastic matrix, as pro-oxidant additives which catalyze the photo- and thermooxidative process (39-44). [Pg.7796]

The microwave susceptors in this initial study have been carbon black, magnetite, lead zirconate titanate, and silicon carbide. The polymeric matrix for these trials has been mainly high density polyethylene, which is a nonpolar polymer without any absorption of microwave radiation. Other thermoplastic matrixes like polyamide 6 (PA6), polybutylene terephthalate (PBT) and metallocene polypropylene (m-PP) have been used as reference material. [Pg.58]

Depending on the application, different matrix materials are used. Among the duromers, most common are polyester and epoxy resins. Thermoplastic matrix materials are polyethylene (pe) and polypropylene (pp), but the use of thermoplastics with aromatic rings on the chain and thus with increased temperature stability also grows. One example is polyetheretherketone (peek), characterised by high toughness and a glass temperature of about 150°C. [Pg.319]

Thermoplastics are solids or semisolids that become liquified at elevated temperatures. Hazardous-waste materials can be mixed with hot thermoplastic hquids and solidified in the cooled thermoplastic matrix, which is rigid but deformable. The thermoplastic material most used for this purpose is asphalt bitumen. Other thermoplastics, such as paraffin and polyethylene, have also been used to immobilize hazardous wastes. [Pg.709]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Technology Descriptions The use of thermoplastic solidification systems in radioactive waste disposal has led to the development of waste containment systems that can be adapted to industrial waste. In processing radioactive waste with bitumen or other thermoplastic material (such as paraffin or polyethylene), the waste is dried, heated and dispersed through a heated, plastic matrix. The mixture is then cooled to solidify the mass. [Pg.182]

The lower thermal stability of natural fibers, up to 230°C, the thermal stability is only small, which limits the number of thermoplastics to be considered as matrix materials for natural fiber composites. Only those thermoplastics whose processing temperature does not exceed 230°C are usable for natural fiber reinforced composites. These are, most of all, polyolefines, such as polyethylene and polypropylene. Technical thermoplastics, such as poyamides, polyesters, and polycarbonates, require... [Pg.803]

In [332] it was noted that the strength of samples cut out at different locations of an article made from filled thermoplastics by pressure molding may differ widely — which is due to the non uniform orientation of the polymer at different locations of the mold. The very high strength parameters of composites with PMF in molded specimens are obviously also due to orientation effects, while for standard mixed samples of similar composition (that is, a matrix which, apart from the filler, contains some superhigh molecular polyethylene imitating the PMF coats) the... [Pg.50]

Short fiber reinforcement of TPEs has recently opened up a new era in the field of polymer technology. Vajrasthira et al. [22] studied the fiber-matrix interactions in short aramid fiber-reinforced thermoplastic polyurethane (TPU) composites. Campbell and Goettler [23] reported the reinforcement of TPE matrix by Santoweb fibers, whereas Akhtar et al. [24] reported the reinforcement of a TPE matrix by short silk fiber. The reinforcement of thermoplastic co-polyester and TPU by short aramid fiber was reported by Watson and Prances [25]. Roy and coworkers [26-28] studied the rheological, hysteresis, mechanical, and dynamic mechanical behavior of short carbon fiber-filled styrene-isoprene-styrene (SIS) block copolymers and TPEs derived from NR and high-density polyethylene (HOPE) blends. [Pg.353]

Fig. 6.8. Fracture toughness, K, of short glass fiber-thermoplastics injection molded composites as a function of weight fraction of fiber, fVr. (O) and (A) polyethylene terephthalate (PET) matrix ( ) and (A) polycarbonate (PC) matrix. Notches made transverse (O, ) and parallel (A, A) to the mold fill direction,... Fig. 6.8. Fracture toughness, K, of short glass fiber-thermoplastics injection molded composites as a function of weight fraction of fiber, fVr. (O) and (A) polyethylene terephthalate (PET) matrix ( ) and (A) polycarbonate (PC) matrix. Notches made transverse (O, ) and parallel (A, A) to the mold fill direction,...

See other pages where Thermoplastic matrices polyethylene is mentioned: [Pg.835]    [Pg.456]    [Pg.2618]    [Pg.241]    [Pg.33]    [Pg.588]    [Pg.479]    [Pg.711]    [Pg.214]    [Pg.273]    [Pg.200]    [Pg.244]    [Pg.99]    [Pg.5]    [Pg.51]    [Pg.1928]    [Pg.309]    [Pg.307]    [Pg.39]    [Pg.5]    [Pg.1050]    [Pg.1050]    [Pg.65]    [Pg.8]    [Pg.252]    [Pg.71]    [Pg.39]    [Pg.640]    [Pg.723]    [Pg.256]   
See also in sourсe #XX -- [ Pg.68 , Pg.69 ]




SEARCH



Matrix thermoplastic

Thermoplastics polyethylenes

© 2024 chempedia.info