Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extreme Thinness

It is often advisable to lubricate ground-glass joint surfaces with an extremely thin film of vaseline. This applies particularly to joints employed in assemblies for distillation under reduced pressure. For distillations under greatly reduced pressures or at very high temperatures it is essential to employ a special lubricant, e.g., silicone grease. [Pg.42]

In low temperature fuel ceUs, ie, AEG, PAEC, PEEC, protons or hydroxyl ions are the principal charge carriers in the electrolyte, whereas in the high temperature fuel ceUs, ie, MCEC, SOEC, carbonate and oxide ions ate the charge carriers in the molten carbonate and soHd oxide electrolytes, respectively. Euel ceUs that use zitconia-based soHd oxide electrolytes must operate at about 1000°C because the transport rate of oxygen ions in the soHd oxide is adequate for practical appHcations only at such high temperatures. Another option is to use extremely thin soHd oxide electrolytes to minimize the ohmic losses. [Pg.577]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film... Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film...
Membranes made by interfacial polymerization have a dense, highly cross-linked interfacial polymer layer formed on the surface of the support membrane at the interface of the two solutions. A less cross-linked, more permeable hydrogel layer forms under this surface layer and fills the pores of the support membrane. Because the dense cross-linked polymer layer can only form at the interface, it is extremely thin, on the order of 0.1 p.m or less, and the permeation flux is high. Because the polymer is highly cross-linked, its selectivity is also high. The first reverse osmosis membranes made this way were 5—10 times less salt-permeable than the best membranes with comparable water fluxes made by other techniques. [Pg.68]

An excellent review of composite RO and nanofiltration (NE) membranes is available (8). These thin-fHm, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-fHm composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-kniniscible solvent. [Pg.144]

Chrysotile fibers can be extremely thin, the unit fiber having a diameter of approximately 25 nm (0.025 p.m). Industrial chrysotile fibers are aggregates of these unit fibers which usually exhibit diameters from 0.1 to 100 p.m their lengths range between a fraction of a mm to several cm, though most of the chrysotile fibers used are shorter than 1 cm. [Pg.346]

The capacitor element in this case is made up of extremely thin metallic films. When a dielectric failure occurs in any of the elements, the current passes through the film. The film, being too thin to sustain the current, fuses only at the point of dielectric puncture clearing the fault quickly. The external fuses remain intact, and so remains the affected element in service. Some manufacturers claim that 10000 such failures and healings may reduce the rating of the element or the unit made up of such elements by barely I %. [Pg.814]

As an example, PL can be used to precisely measure the alloy composition xof a number of direct-gap III-V semiconductor compounds such as Alj Gai j, Inj Gai jfAs, and GaAsjfPj j(, since the band gap is directly related to x. This is possible in extremely thin layers that would be difficult to measure by other techniques. A calibration curve of composition versus band gap is used for quantification. Cooling the sample to cryogenic temperatures can narrow the peaks and enhance the precision. A precision of 1 meV in bandgap peak position corresponds to a value of 0.001 for xin AljfGai j, which may be usefiil for comparative purposes even if it exceeds the accuracy of the x-versus-bandgap calibration. [Pg.378]

Static SIMS is also capable of analyzing liquids and fine particles or powders. A liquid is ofren prepared by putting down an extremely thin layer on a flat substrate, such as a silicon wafer. Particles are easily prepared by pressing them onto doublesided tape. No further sample preparation, such as gold- or carbon-coating, is required. [Pg.551]

Depth profiling by SALI provides quantitative information through interfaces and for extremely thin films, in the form of reliable chemical concentrations. [Pg.564]

Solid bed dehydration systems work on the principle of adsorption. Adsorption involves a form of adhesion between the surface of the solid desiccant and the water vapor in the gas. The water forms an extremely thin film that is held to the desiccant surface by forces of attraction, but there is no chemical reaction. The desiccant is a solid, granulated drying or dehydrating medium with an extremely large effective surface area per unit weight because of a multitude of microscopic pores and capillary... [Pg.228]

Haar-balg. m. hair follicle. -balgdrUse. /. sebaceous gland. -beize, /. depilatory, -bleiche, /. hair bleaching, -blutgefass, n. (Anat.) capillary, -draht, m. extremely thin wire, capillary wire, -driise, /. sebaceous gland. [Pg.200]

A variety of chemical additives can be incorporated in lubricating oils to improve their properties under boundary lubrication conditions. Some of these additives react with the surfaces to produce an extremely thin layer of solid lubricant, which helps to separate the surfaces and prevent seizure. Others improve the resistance of the oil film to the effect of pressure. [Pg.845]

The explicit mathematical treatment for such stationary-state situations at certain ion-selective membranes was performed by Iljuschenko and Mirkin 106). As the publication is in Russian and in a not widely distributed journal, their work will be cited in the appendix. The authors obtain an equation (s. (34) on page 28) similar to the one developed by Eisenman et al. 6) for glass membranes using the three-segment potential approach. However, the mobilities used in the stationary-state treatment are those which describe the ion migration in an electric field through a diffusion layer at the phase boundary. A diffusion process through the entire membrane with constant ion mobilities does not have to be assumed. The non-Nernstian behavior of extremely thin layers (i.e., ISFET) can therefore also be described, as well as the role of an electron transfer at solid-state membranes. [Pg.236]


See other pages where Extreme Thinness is mentioned: [Pg.380]    [Pg.116]    [Pg.116]    [Pg.61]    [Pg.137]    [Pg.209]    [Pg.107]    [Pg.811]    [Pg.814]    [Pg.40]    [Pg.223]    [Pg.101]    [Pg.136]    [Pg.379]    [Pg.423]    [Pg.423]    [Pg.730]    [Pg.210]    [Pg.391]    [Pg.410]    [Pg.963]    [Pg.18]    [Pg.43]    [Pg.273]    [Pg.600]    [Pg.601]    [Pg.118]    [Pg.142]    [Pg.449]    [Pg.663]    [Pg.372]    [Pg.467]    [Pg.227]    [Pg.239]    [Pg.238]   


SEARCH



Extreme

Extremities

Extremizer

© 2024 chempedia.info