Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonpolar polymers

In some polymer-nonpolar solvent systems, % has been calculated as a function of concentration on the basis of the statistical-thermodynamical theory called the equation of state theory [13,14]. This semiempirical theory takes into account not only the interaction between solute and solvent, but also the characteristics of pure substances through the equations of state of each component. At present, however, we cannot apply this approach to such a complex case as the NIPA-water system. Thus, at the present stage, we must regard % as an empirical parameter to be determined through a comparison between calculated and experimental results. The empirical estimation of % for the NIPA-water system will be described in the next section. [Pg.8]

Modified Surfaces. It is frequently desirable to change the surface of a polymer. Nonpolar surfaces of plastics are characterized by static electricity buildup, non-wetting, poor adhesion, low printability, and poor dyeing. These disadvantages can be overcome by grafting polar vinyl monomers upon the surface by irradiation. A. S. Hoffman describes radiation grafting of polyelectrolytes upon nonpolar surfaces, and A. Chapiro and co-workers discuss radiation grafting of acrylic acid and vinyl pyridene upon Teflon films. [Pg.14]

Technical — Greater output due to increased level of transmissible energy — Reduced wear due to lower proportion of mechanical energy — Greater process flexibility due to third, independently controlled, energy source — More rapid process control with no- delay control of microwave energy supply - Narrowed selection of processable basic polymers. Nonpolar plastics cannot be heated with microwaves - Not yet known how much energy can be transmitted by microwaves - Microwave-transparent inserts required in extruder... [Pg.330]

Chem. Descrip. Vinyl polymer, nonpolar silicone in naphtha, toluene, xylene... [Pg.261]

Styrene/divinyl benzene co-polymer Nonpolar Size exclusion... [Pg.116]

One of the most useful studies was the division of synthetic polymers into four categories based upon solubility water-soluble polymers, polar organic soluble polymers, nonpolar organic soluble polymers, and polymers soluble only in difficult solvents such as dimethylsulfoxide, hot 1,2-dichlorobenzene, or sulfuric acid. This subdivision facilitates identification of appropriate MALDI matrices, depending upon the characteristics of the polymer. For water-soluble polymers, matrix conditions are similar to peptides or proteins. 2,5-DHB was used to analyze PEG, PPG, and PMMA at a concentration of lOg/L in water/ ethanol (9 1 ratio). " Various metal salts were added to increase cation adduction. [Pg.231]

Microreticular Resins. Microreticular resins, by contrast, are elastic gels that, in the dry state, avidly absorb water and other polar solvents in which they are immersed. While taking up solvent, the gel structure expands until the retractile stresses of the distended polymer network balance the osmotic effect. In nonpolar solvents, little or no swelling occurs and diffusion is impaired. [Pg.1109]

Hydrogen bonding stabilizes some protein molecules in helical forms, and disulfide cross-links stabilize some protein molecules in globular forms. We shall consider helical structures in Sec. 1.11 and shall learn more about ellipsoidal globular proteins in the chapters concerned with the solution properties of polymers, especially Chap. 9. Both secondary and tertiary levels of structure are also influenced by the distribution of polar and nonpolar amino acid molecules relative to the aqueous environment of the protein molecules. Nonpolar amino acids are designated in Table 1.3. [Pg.19]

Finally, the dielectric properties of a nonpolar polymer are modified by inclusion of even small amounts of a polar comonomer. In coatings applications the presence of polar repeat units in an otherwise nonpolar polymer reduces the tendency for static buildup during manufacture, printing, and ultimate use. On the other hand, in dielectric applications this increases the power loss and must be kept to a minimum, even to the exclusion of polar initiator fragments. [Pg.469]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

The sorption behavior of perfluorocarbon polymers is typical for nonpolar partially crystalline polymers (89). The weight gain strongly depends on the solubihty parameter. Litde sorption of substances such as hydrocarbons and polar compounds occurs. [Pg.352]

Dispersive Interactions. For pairs of nonpolar polymers, the intermolecular forces are primarily of the dispersive type, and in such cases the energy of interaction between unlike segments is expected to be closely approximated by the geometric mean of the energies of interaction between the two like pairs (98). In this case, the Flory-Huggins interaction energy between this polymer pair can be expressed in terms of the solubiUty parameters 5 of the pure components. [Pg.411]

Obviously, B can never be negative in these cases to the extent that equation 5 is vaUd, miscibility can only be driven by combinatorial entropy, and this possibihty is maximized by matching the values of 5 and 5g as nearly as possible. In general, high molecular weight, nonpolar polymers are rarely miscible with each other. [Pg.411]

Solubility. Cross-linking eliminates polymer solubiUty. Crystallinity sometimes acts like cross-linking because it ties individual chains together, at least well below T. Thus, there are no solvents for linear polyethylene at room temperature, but as it is heated toward its (135°C), it dissolves in a variety of aUphatic, aromatic, and chlorinated hydrocarbons. A rough guide to solubiUty is that like dissolves like, ie, polar solvents tend to dissolve polar polymers and nonpolar solvent dissolve nonpolar polymers. [Pg.435]

The polarity of the polymer is important only ia mixtures having specific polar aprotic solvents. Many solvents of this general class solvate PVDC strongly enough to depress the melting temperature by more than 100°C. SolubiUty is normally correlated with cohesive energy densities or solubiUty parameters. For PVDC, a value of 20 0.6 (J/cm (10 0.3 (cal/cm ) has been estimated from solubiUty studies ia nonpolar solvents. The value... [Pg.433]

The degradation of VDC polymers in nonpolar solvents is comparable to degradation in the soHd state (101,125,129,130). However, these polymers are unstable in many polar solvents (131). The rate of dehydrochlorination increases markedly with solvent polarity. In strongly polar aprotic solvents, eg, hexamethylphosphoramide, dehydrochlorination proceeds readily (129,132). This reaction is cleady unlike thermal degradation and may well involve the generation of ionic species as intermediates. [Pg.438]

In order to generate stereoregular (usually isotactic) polymers, the polymerization is conducted at low temperatures ia nonpolar solvents. A variety of soluble initiators can produce isotactic polymers, but there are some initiators, eg, SnCl, that produce atactic polymers under isotactic conditions (26). The nature of the pendant group can influence tacticity for example, large, bulky groups are somewhat sensitive to solvent polarity and can promote more crystallinity (14,27). [Pg.516]

Internal surfactant antistats ate physically mixed with the plastic resin prior to processing. When the resin is melted, the antistat distributes evenly in the polymer matrix. The antistat usually has some degree of solubiUty in the molten polymer. However, when the polymer is processed (extmded, molded, etc) into its final form and allowed to cool, the antistat migrates to the surface of the finished article due to its limited solubiUty in the solidified resin. The molecule of a surface-active agent is composed of a polar hydrophilic portion and a nonpolar hydrophobic portion. The hydrophilic portion of the surfactant at the surface attracts moisture from the atmosphere it is the moisture that has the static dissipative effect. [Pg.297]

Nonionic surfactants perform well in nonpolar polymers such as polyethylene and polypropylene. Examples of nonionic surfactants ate ethoxylated fatty amines, fatty diethanolamides, and mono- and diglycetides (see Amines, fatty amines Alkanolamines). Amphoteric surfactants find Httle use in plastics (134). [Pg.297]

Liquid-phase chlorination of butadiene in hydroxyhc or other polar solvents can be quite compHcated in kinetics and lead to extensive formation of by-products that involve the solvent. In nonpolar solvents the reaction can be either free radical or polar in nature (20). The free-radical process results in excessive losses to tetrachlorobutanes if near-stoichiometric ratios of reactants ate used or polymer if excess of butadiene is used. The "ionic" reaction, if a small amount of air is used to inhibit free radicals, can be quite slow in a highly purified system but is accelerated by small traces of practically any polar impurity. Pyridine, dipolar aptotic solvents, and oil-soluble ammonium chlorides have been used to improve the reaction (21). As a commercial process, the use of a solvent requites that the products must be separated from solvent as well as from each other and the excess butadiene which is used, but high yields of the desired products can be obtained without formation of polymer at higher butadiene to chlorine ratio. [Pg.38]

In addition to thermal polymerization, it is possible to polymerize CPD with inorganic haUdes as catalyst. With trichloroacetic acid as the catalyst, deeply colored, blue polymers that conduct electricity in nonpolar solvents such as benzene in the presence of acid can be obtained. The conductivity and color are caused by blocks of conjugated double bonds present in the polymers (20—21). [Pg.430]

Polyisobutylene is readily soluble in nonpolar Hquids. The polymer—solvent interaction parameter Xis a. good indication of solubiHty. Values of 0.5 or less for a polymer—solvent system indicate good solubiHty values above 0.5 indicate poor solubiHty. Values of X foi several solvents are shown in Table 2 (78). The solution properties of polyisobutylene, butyl mbber, and halogenated butyl mbber are very similar. Cyclohexane is an exceUent solvent, benzene a moderate solvent, and dioxane a nonsolvent for polyisobutylene polymers. [Pg.484]

This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

When viscometric measurements of ECH homopolymer fractions were obtained in benzene, the nonperturbed dimensions and the steric hindrance parameter were calculated (24). Erom experimental data collected on polymer solubiUty in 39 solvents and intrinsic viscosity measurements in 19 solvents, Hansen (30) model parameters, 5 and 5 could be deterrnined (24). The notation 5 symbolizes the dispersion forces or nonpolar interactions 5 a representation of the sum of 8 (polar interactions) and 8 (hydrogen bonding interactions). The homopolymer is soluble in solvents that have solubility parameters 6 > 7.9, 6 > 5.5, and 0.2 < <5.0 (31). SolubiUty was also determined using a method (32) in which 8 represents the solubiUty parameter... [Pg.555]


See other pages where Nonpolar polymers is mentioned: [Pg.91]    [Pg.585]    [Pg.4310]    [Pg.12]    [Pg.91]    [Pg.585]    [Pg.4310]    [Pg.12]    [Pg.16]    [Pg.123]    [Pg.316]    [Pg.170]    [Pg.124]    [Pg.296]    [Pg.262]    [Pg.269]    [Pg.236]    [Pg.321]    [Pg.322]    [Pg.403]    [Pg.547]    [Pg.492]    [Pg.52]    [Pg.224]    [Pg.433]    [Pg.461]    [Pg.110]    [Pg.352]    [Pg.551]   
See also in sourсe #XX -- [ Pg.585 ]

See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Diffusion nonpolar polymer

Nonpolar

Nonpolar polymer matrix

Nonpolar polymers, simple

Nonpolarized

Polymer HPLC nonpolar bonded phase

Polymers nonpolar solvents

© 2024 chempedia.info