Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The essential amino acids

M.p. 207°C. The naturally occurring substance is dextrorotatory. Arginine is one of the essential amino-acids and one of the most widely distributed products of protein hydrolysis. It is obtained in particularly high concentration from proteins belonging to the prolamine and histone classes. It plays an important role in the production of urea as an excretory product. [Pg.41]

Because of the simplicity of swiae and poultry feeds, most feed manufacturers add vitamins (qv) and trace minerals to ensure an adequate supply of essential nutrients. Amino acids (qv) such as methionine [7005-18-7] lysiae [56-87-17, threonine [36676-50-3] and tryptophan [6912-86-3], produced by chemical synthesis or by fermentation (qv), are used to fortify swiae and poultry diets. The use of these supplements to provide the essential amino acids permits diets with lower total cmde proteia coateat. [Pg.141]

Gelatin can be a source of essential amino acids when used as a diet supplement and therapeutic agent. As such, it has been widely used in muscular disorders, peptic ulcers, and infant feeding, and to spur nail growth. Gelatin is not a complete protein for mammalian nutrition, however, since it is lacking in the essential amino acid tryptophan [73-22-3] and is deficient in sulfur-containing amino acids. [Pg.208]

Feeding standards, which have been instituted nationally, indicate the amount of the essential amino acids (together with other nutrients) for the rational breeding of domestic animals. The feeding standards of the National Research Council (NRC) of the United States and Agricultural Research Council (ARC) of the United Kingdom are well known (the former indicates the minimal amount and the latter shows the recommended amount). [Pg.282]

Currently available proteins are all deficient to greater or lesser extent in one or more of the essential amino acids. The recently advanced plastein reaction (229) has made it possible to use protein itself as substrate and to attach amino acid esters to the protein with high efficiency. By this method, soy bean protein (which is deficient in methionine) has been improved to the extent of having covalently attached L-methionine at 11%. [Pg.296]

Biological examples of pericyclic reactions are relatively rare, although one much-studied example occurs during biosynthesis in bacteria of the essential amino acid phenylalanine. Phenylalanine arises from the precursor chorismate,... [Pg.1194]

Animals, including humans, cannot synthesise all the different amino adds they need and thus require them in their diet. These amino adds are called the essential amino acids. Proteins in food are hydrolysed in the digestive tract and the resulting amino acids are reassembled into proteins within the animal s cells. All animals are ultimately dependent on plants for protein, as it is plants that create protein by combining inorganic nitrogen from the soil (as nitrate) with organic molecules derived from carbon from the atmosphere (as CO2). [Pg.60]

In terms of amino acids bacterial protein is similar to fish protein. The yeast s protein is almost identical to soya protein fungal protein is lower than yeast protein. In addition, SCP is deficient in amino acids with a sulphur bridge, such as cystine, cysteine and methionine. SCP as a food may require supplements of cysteine and methionine whereas they have high levels of lysine vitamins and other amino acids. The vitamins of microorganisms are primarily of the B type. Vitamin B12 occurs mostly hi bacteria, whereas algae are usually rich in vitamin A. The most common vitamins in SCP are thiamine, riboflavin, niacin, pyridoxine, pantothenic acid, choline, folic acid, inositol, biotin, B12 and P-aminobenzoic acid. Table 14.4 shows the essential amino acid analysis of SCP compared with several sources of protein. [Pg.339]

Protein molecules are condensation copolymers of up to twenty different naturally occurring amino acids that differ in their side chains (Table 19.4). Our bodies can synthesize eleven amino acids in sufficient amounts for our needs. But we cannot produce the proteins necessary for life unless we ingest the other nine, which are known as the essential amino acids. [Pg.889]

Historically, the development of animal cell culture systems has been dependent upon the development of new types of tissue culture media. Mouse L cells and HeLa cells were developed using a balanced salt solution supplemented with blood plasma, an embryonic tissue extract, and/or serum. In 1955 Eagle developed a nutritionally defined medium, containing all of the essential amino acids, vitamins, cofactors, carbohydrates, salts, and small amounts of dialyzed serum (Table 1). He demonstrated that this minimal essential medium (MEM) supported the long-term growth of mouse L and HeLa ceils. Eagle s MEM was so well defined that the omission of a single essential nutrient eventually resulted in the death of these animal cells in culture. [Pg.471]

Eagle s MEM with serum rapidly became a standard growth medium for culturing animal cells in vitro. A number of variations of this medium were developed, including Dulbecco and Vogt s modified Eagle s essential medium (DMEM) (Table 2). DMEM contains nonessential as well as essential amino acids. The essential amino acids and vitamins are at concentrations which are significantly elevated as compared to MEM. [Pg.471]

The amino acids are required for protein synthesis. Some must be supplied in the diet (the essential amino acids) since they cannot be synthesized in the body. The remainder are nonessential amino acids that are supplied in the diet but can be formed from metabolic intermediates by transamination, using the amino nitrogen from other amino acids. After deamination, amino nitrogen is excreted as urea, and the carbon skeletons that remain after transamination (1) are oxidized to CO2 via the citric acid cycle, (2) form glucose (gluconeogenesis), or (3) form ketone bodies. [Pg.124]

A vitamin is defined as an organic compound that is required in the diet in small amounts for the maintenance of normal metabofic integrity. Deficiency causes a specific disease, which is cured or prevented only by restoring the vitamin to the diet (Table 45-1). However, vitamin D, which can be made in the skin after exposure to sunhght, and niacin, which can be formed from the essential amino acid tryptophan, do not stricdy conform to this definition. [Pg.481]

Niacin was discovered as a nutrient during studies of pellagra. It is not strictly a vitamin since it can be synthesized in the body from the essential amino acid tryptophan. Two compounds, nicotinic acid and nicotinamide, have the biologic activity of niacin its metabolic function is as the nicotinamide ring of the coenzymes NAD and NADP in oxidation-reduction reactions (Figure 45-11). About 60 mg of tryptophan is equivalent to 1 mg of dietary niacin. The niacin content of foods is expressed as mg niacin equivalents = mg preformed niacin + 1/60 X mg tryptophan. Because most of the niacin in cereals is biologically unavailable, this is discounted. [Pg.490]

The first step in the synthesis of 5-HT is hydroxylation of the essential amino acid, tryptophan, by the enzyme tryptophan hydroxylase (Fig. 9.4). This enzyme has several features in common with tyrosine hydroxylase, which converts tyrosine to /-DOPA in... [Pg.190]

Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid... Figure 9.4 The synthesis and metabolism of 5-HT. The primary substrate for the pathway is the essential amino acid, tryptophan and its hydroxylation to 5-hydrox5dryptophan is the rate-limiting step in the synthesis of 5-HT. The cytoplasmic enzyme, monoamine oxidase (MAOa), is ultimately responsible for the catabolism of 5-HT to 5-hydroxyindoleacetic acid...
Antitumor enzyme, hydrolyzes L-asparagine in bloodstream, depriving tumor cells of the essential amino acid results in inhibition of protein, DNA, and RNA synthesis and cell proliferation derived from Escharichia coli... [Pg.1408]

The grain or pulse forms of legumes have a high total protein content (20-26%) and can therefore be used as a natural supplement to cereals. Pulses are normally deficient in the essential amino acids methionine and cystine but contain enough lysine, whereas cereals are deficient in lysine but contain enough methionine and cystine. [Pg.90]

There are a few substances that can reduce serotonin, norepinephrine and/or dopamine rapidly and substantially, reducing them to levels thought to be lower than those of depressed patients.23 That is what reserpine was supposed to do and, as we have seen, it did not cause depression - despite the early clinical impression that it did. Other substances have been used in later studies, the most common of which are amino-acid mixtures that lack the essential amino acids needed by the body to produce these neurotransmitters. For example, having people drink a beverage that is rich in amino acids, but does not contain tryptophan (the amino acid needed to produce serotonin), lowers their serotonin levels within a couple of hours. [Pg.91]

Plants synthesize all the amino acids they require. They do so using as raw material carbohydrates, which they make during photosynthesis, and nitrogen, derived from nitrate ions absorbed from the soil. Animals cannot synthesize all the amino acids required for their regular living, health, and growth. Those they cannot synthesize, known as the essential amino acids, are acquired from plants and/or animals they consume as food. Human beings, for example, acquire nine essential amino acids from their diet. [Pg.347]

The essential amino acids that cannot be synthesized by humans. [Pg.347]

Histamine synthesis in the brain is controlled by the availability of L-histidine and the activity of histidine decarboxylase. Although histamine is present in plasma, it does not penetrate the blood-brain barrier, such that histamine concentrations in the brain must be maintained by synthesis. With a value of 0.1 mmol/1 for L-histidine under physiological conditions, HDC is not saturated by histidine concentrations in the brain, an observation that explains the effectiveness of large systemic doses of this amino acid in raising the concentrations of histamine in the brain. The essential amino acid L-histidine is transported into the brain by a saturable, energy-dependent mechanism [5]. Subcellular fractionation studies show HDC to be localized in cytoplasmic fractions of isolated nerve terminals, i.e. synaptosomes. [Pg.254]

A specific example of the law of the minimum on a molecular level is the essential amino acids. The need for essential amino acids in human nutrition shows that one amino acid cannot substitute for another. Substitution of one amino acid for another can lead to disease. This is shown, for example, in sickle... [Pg.23]

A protein that is unduT7 rich in the ten essential amino acids would not provide sufficient nitrogen for other metabolic processes without obligatory catabolism of the essential amino acids. Thus, the proportion of the total nitrogen intake that essential amino acids form indicate how a given protein fulfills nutritional requirements for proteins. This proportion, the E/T ratio (54), indicative of the amount of protein nitrogen supplied by essential amino acids, is (in g of essential amino acids per g of nitrogen)... [Pg.258]

By the 1930s many workers had shown that nutritionally inadequate proteins, such as zein from maize, could be effective as a source of nitrogen if supplemented by additional amino acids (for zein, tryptophan). Even if it contained all the essential amino acids, the amount of protein in the diet influenced the results. Osbome and Mendel found that if the diet contained 18% by weight casein, which is low in cystine, young rats grew, but if the amount of protein was diminished, added cystine was required to offset the relative deficiency of this amino acid. Later, after methionine had been discovered, it was shown to replace the need for cystine. [Pg.24]


See other pages where The essential amino acids is mentioned: [Pg.233]    [Pg.305]    [Pg.476]    [Pg.274]    [Pg.282]    [Pg.293]    [Pg.301]    [Pg.393]    [Pg.47]    [Pg.339]    [Pg.940]    [Pg.196]    [Pg.350]    [Pg.176]    [Pg.286]    [Pg.59]    [Pg.96]    [Pg.152]    [Pg.413]    [Pg.413]    [Pg.66]    [Pg.365]    [Pg.8]    [Pg.62]    [Pg.136]    [Pg.2]   


SEARCH



Biosynthesis of the essential amino acids

Biosynthesis of the non-essential amino acids

Essential amino acids

The Amino Acids

© 2024 chempedia.info