Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers free-radical polymerization

The reversible addition of sodium bisulfite to carbonyl groups is used ia the purification of aldehydes. Sodium bisulfite also is employed ia polymer and synthetic fiber manufacture ia several ways. In free-radical polymerization of vinyl and diene monomers, sodium bisulfite or metabisulfite is frequentiy used as the reduciag component of a so-called redox initiator (see Initiators). Sodium bisulfite is also used as a color preventative and is added as such during the coagulation of crepe mbber. [Pg.150]

As the demand for rubber increased, so did the chemical industry s efforts to prepare a synthetic substitute. One of the first elastomers (a synthetic polymer that possesses elasticity) to find a commercial niche was neoprene, discovered by chemists at Du Pont in 1931. Neoprene is produced by free-radical polymerization of 2-chloro-1,3-butadiene and has the greatest variety of applications of any elastomer. Some uses include electrical insulation, conveyer belts, hoses, and weather balloons. [Pg.408]

Noda and Watanabe [42] reported a simple synthetic procedure for the free radical polymerization of vinyl monomers to give conducting polymer electrolyte films. Direct polymerization in the ionic liquid gives transparent, mechanically strong and highly conductive polymer electrolyte films. This was the first time that ambient-temperature ionic liquids had been used as a medium for free radical polymerization of vinyl monomers. The ionic liquids [EMIM][BF4] and [BP][Bp4] (BP is N-butylpyridinium) were used with equimolar amounts of suitable monomers, and polymerization was initiated by prolonged heating (12 hours at 80 °C) with benzoyl... [Pg.324]

In the most succinct sense, a hydrogel is simply a hydrophilic polymeric network cross-linked in some fashion to produce an elastic structure. Thus any technique which can be used to create a cross-linked polymer can be used to produce a hydrogel. Copolymerization/cross-linking free radical polymerizations are commonly used to produce hydrogels by reacting hydrophilic monomers with multifunctional cross-linkers. Water-soluble linear polymers of both natural and synthetic origin are cross-linked to form hydrogels in a number of ways ... [Pg.488]

The architecture of macromolecules is another important synthetic variable. New materials with controlled branching sequences or stereoregularity provide tremendous opportunity for development. New polymerization catalysts and initiators for controlled free-radical polymerization are driving many new materials design, synthesis, and production capabilities. Combined with state-of-the-art characterization by probe microscopy, radiation scattering, and spectroscopy, the field of polymer science is poised for explosive development of novel and important materials. New classes of nonlinear structured polymeric materials have been invented, such as dendrimers. These structures have regularly spaced branch points beginning from a central point—like branches from a tree trunk. New struc-... [Pg.126]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

Since many synthetic plastics and elastomers and some fibers are prepared by free radical polymerization, this method is important. Table 6.1 contains a listing of commercially important addition polymers including those that will be emphasized in this chapter because they are prepared using the free radical process. [Pg.173]

With tyrosinase, on the contrary, a two-electron oxidation occurs, as no EPR signal was detected in the catechol oxidation at pH 5.3 Melanins are polymerization products of tyrosine, whereby tyrosinase catalyses the first steps the formation of dopa (3,4-dihydroxyphenylalanine) and of dopaquinone, leading to an indolequi-none polymer The peroxidase mechanism for the conversion of tyrosine into dopa in melanogenesis was not substantiated In natural and synthetic melanins free radicals of a semiquinone type were detected by EPR 4-10 x 10 spins g of a hydrated suspension (the material was modified on drying and the number of free spins increased). The fairly symmetrical EPR signal had a g-value of 2.004 and a line-width of 4-10 G The melanins seem to be natural radical scavengers. [Pg.22]

Dioxiranes constitute a new class of organic peroxides that possess great potential as oxidants with a variety of applications in synthetic organic chemistry.5 7 A new convenient route for the synthesis of silanol polymers has been developed by the selective oxidation of =Si—H bonds with dimethyldioxirane. A series of styrene-based silanol polymers and copolymers were synthesized (Scheme l).8 9 The precursor polymers and styrene copolymers containing =Si—H bond were first synthesized by free radical polymerization of the corresponding monomers or copolymerization of the... [Pg.181]

Relatively few simple pyrimidine monomers have been incorporated into heterocyclic polymers (70MI11100). By far the greatest efforts with this ring system have involved polymerizable derivatives of nucleic acid bases and related compounds (81MH1102). The majority of this work has involved the synthesis and free radical polymerization of suitable vinyl- and acrylic-functional monomers, e.g. (134)-(136), although epoxy and other derivatives have also been studied. A number of the polymers exhibit base-paired complex formation with natural nucleic acid polymers or synthetic analogues, have found use in... [Pg.288]

The concept of using the functional groups of electrode surfaces themselves to attach reagents by means of covalent bonding offers synthetic diversity and has been developed for mono- and multi-layer modifications. The electrode surface can be activated by reagents such as organosilanes [5] which can be used to covalently bond electroactive species to the activated electrode surface. Recently, thermally induced free-radical polymerization reactions at the surfaces of silica gel have been demonstrated [21]. This procedure has been applied to Pt and carbon electrode surfaces. These thermally initiated polymer macromolecules have the surface Of the electrode as one of their terminal groups. Preliminary studies indicate that the... [Pg.247]

Polymer colloids involve dispersions containing polymer particles having sizes greater than about 1 nm. If dispersed in aqueous solution, such a polymer dispersion is called a latex. These are usually synthetic polymer particles formed by free radical polymerization [784], Many kinds of polymerization systems exist, involving almost all of the possible kinds of colloidal dispersion, including emulsion polymerization, hence the more general term heterophase polymerization is sometimes used. Several reviews are available [785-789]. Emulsion polymerization provides a convenient means of controlling the polymerization of monomers and is used to make, for example, synthetic rubber which is mostly a co-polymer of butadiene and styrene. [Pg.297]

Synthetic methods targeting amino acid incorporation into functional materials vary widely. Free-radical polymerization of various amino acid substituted acrylates has produced many hydrocarbon-amino acid materials [161, 162]. In separate efforts, MorceUet and Endo have synthesized and meticulously characterized a library of polymers using this chain addition chemistry [163- 166]. Grubbs has shown ROMP to be successful in this motif, polymerizing amino add substituted norbornenes [167-168]. To remain within the scope of this review, the next section wiU focus only on ADMET polymerization as a method of amino add and peptide incorporation into polyethylene-based polymers. [Pg.27]

Wallace Carothers will be the subject of one of our Polymer Milestones when we discuss nylon in Chapter 3. Among his many accomplishments in the late 1920s and early 1930s, Carothers and his coworkers made a major contribution to the discovery and eventual production of the synthetic rubber, polychloroprene. It was synthesized from the diene monomer, chloroprene, CH2=CCI-CH=CHr Chloroprene, which is a very reactive monomer—it spontaneously polymerizes in the absence of inhibitors— was a product of some classic studies on acetylene chemistry performed by Carothers and coworkers at that time. In common with butadiene and iso-prene, in free radical polymerization chloroprene is incorporated into the growing chain as a number of different structural isomers. Elastomeric materials having very different physical and mechanical properties can be made by simply varying the polym-... [Pg.38]

As a result of the advances in catalyst discovery for aqueous ethylene polymerization, silica-polyethylene nancomposites have been prepared with structures that vary with changing catalyst structure and silica composition." It is likely that many more advances in the area of high-tech composites with potential biological and nanotechnology applications will be made in the next few years through aqueous polymerization processes. In addition to free radical polymerizations and catalytic polymerizations, it should be noted that oxidative polymerizations can also be performed in aqueous media to yield conducting polymers. Recently, this has been used to prepare polypyrrole-coated latex particles that are expected to be interesting synthetic mimics for micrometeorites. [Pg.61]

Recent advances in polymer synthetic chemistry have allowed the development of elegant and more complicated architectural polymers. This has been driven predominantly by the development of various controlled polymerization methodologies, particularly in the area of free radical polymerization [45-49]. This has equipped the polymer chemist with a rich and abundant synthetic toolbox. In general, these architectural polymers are based on the principle of being able to sequentially add different polymeric blocks with defined molecular weight into a single polymer chain [50]. The synthesis of block copolymers is particularly suited to the combination of two different polymerization techniques. This can be quite easily achieved by the use of a bifunctional initiator and is an elegant synthetic... [Pg.329]


See other pages where Synthetic polymers free-radical polymerization is mentioned: [Pg.330]    [Pg.676]    [Pg.1]    [Pg.110]    [Pg.245]    [Pg.259]    [Pg.353]    [Pg.1]    [Pg.413]    [Pg.4]    [Pg.110]    [Pg.12]    [Pg.267]    [Pg.33]    [Pg.22]    [Pg.180]    [Pg.677]    [Pg.2021]    [Pg.1]    [Pg.104]    [Pg.104]    [Pg.127]    [Pg.1057]    [Pg.1068]    [Pg.25]    [Pg.2]    [Pg.99]    [Pg.101]    [Pg.330]   
See also in sourсe #XX -- [ Pg.1223 , Pg.1224 , Pg.1225 ]




SEARCH



Free polymer

Free radical polymerization polymers

Polymer Synthetic polymers

Polymer free radical

Polymer radicals

Polymerization free radical

Synthetic polymers

Synthetic polymers free-radical chain-growth polymerization

Synthetic polymers polymerization

© 2024 chempedia.info