Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox initiator

The early history of redox initiation has been described by Bacon.23 The subject has also been reviewed by Misra and Bajpai,207 Bamford298 and Sarac.2,0 The mechanism of redox initiation is usually bimolecular and involves a single electron transfer as the essential feature of the mechanism that distinguishes it from other initiation processes. Redox initiation systems are in common use when initiation is required at or below ambient temperature and drey are frequently used for initiation of emulsion polymerization. [Pg.104]

Common components of many redox systems are a peroxide and a transition metal ion or complex. The redox reactions of peroxides are covered in the sections on those compounds. Discussion on specific redox systems can be found in sections on diacyl peroxides (3,3.2.1.5), hydroperoxides (3,3.2.5) persulfate (3.3.2.6.1) and hydrogen peroxide (3.3.2.6,2). [Pg.104]

/ Meta complex-organic halide redox systems [Pg.104]


Figure 6.3 shows some data which constitute a test of Eq. (6.26). In Fig. 6.3a, Rp and [M] are plotted on a log-log scale for a constant level of redox initiator. The slope of this line, which indicates the order of the polymerization with respect to monomer, is unity, showing that the polymerization of methyl methacrylate is first order in monomer. Figure 6.3b is a similar plot of the initial rate of polymerization—which essentially maintains the monomer at constant con-centration—versus initiator concentration for several different monomer-initiator combinations. Each of the lines has a slope of indicating a half-order dependence on [I] as predicted by Eq. (6.26). Figure 6.3 shows some data which constitute a test of Eq. (6.26). In Fig. 6.3a, Rp and [M] are plotted on a log-log scale for a constant level of redox initiator. The slope of this line, which indicates the order of the polymerization with respect to monomer, is unity, showing that the polymerization of methyl methacrylate is first order in monomer. Figure 6.3b is a similar plot of the initial rate of polymerization—which essentially maintains the monomer at constant con-centration—versus initiator concentration for several different monomer-initiator combinations. Each of the lines has a slope of indicating a half-order dependence on [I] as predicted by Eq. (6.26).
Water-soluble peroxide salts, such as ammonium or sodium persulfate, are the usual initiators. The initiating species is the sulfate radical anion generated from either the thermal or redox cleavage of the persulfate anion. The thermal dissociation of the persulfate anion, which is a first-order process at constant temperature (106), can be greatly accelerated by the addition of certain reducing agents or small amounts of polyvalent metal salts, or both (87). By using redox initiator systems, rapid polymerizations are possible at much lower temperatures (25—60°C) than are practical with a thermally initiated system (75—90°C). [Pg.168]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

Suitable catalysts are /-butylphenylmethyl peracetate and phenylacetjdperoxide or redox catalyst systems consisting of an organic hydroperoxide and an oxidizable sulfoxy compound. One such redox initiator is cumene—hydroperoxide, sulfur dioxide, and a nucleophilic compound, such as water. Sulfoxy compounds are preferred because they incorporate dyeable end groups in the polymer by a chain-transfer mechanism. Common thermally activated initiators, such as BPO and AIBN, are too slow for use in this process. [Pg.280]

The reversible addition of sodium bisulfite to carbonyl groups is used ia the purification of aldehydes. Sodium bisulfite also is employed ia polymer and synthetic fiber manufacture ia several ways. In free-radical polymerization of vinyl and diene monomers, sodium bisulfite or metabisulfite is frequentiy used as the reduciag component of a so-called redox initiator (see Initiators). Sodium bisulfite is also used as a color preventative and is added as such during the coagulation of crepe mbber. [Pg.150]

Redox initiator systems are normally used in the emulsion polymerization of VDC to develop high rates at low temperatures. Reactions must be carried out below - 80° C to prevent degradation of the polymer. Poly(vinyHdene chloride) in emulsion is also attacked by aqueous base. Therefore, reactions should be carried out at low pH. [Pg.429]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]

Generally the oxidant is compounded in one part of the adhesive, and the reductant in the other. Redox initiation and cure occur when the two sides of the adhesive are mixed. There also exist the one-part aerobic adhesives, which use atmospheric oxygen as the oxidant. The chemistry of the specific redox systems commonly used in adhesives will be discussed later. The rates of initiation and propagation are given by the following equations ([9] p. 221). [Pg.827]

There are other initiator systems of lesser commercial importance. Cumene hydroperoxide is reported to cure acrylic adhesives in the presence of alkyl or pyridyl thioureas [105]. These initiators have been combined with a phosphated acrylate to promote adhesion to metal [106]. Thiourea-based initiators can be applied as a one-part on galvanized metal, where the metal surface provides the second part of the redox initiator [107]. [Pg.838]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

Usually, the rate equation of redox initiated polymerization is shown as follows ... [Pg.230]

When the functional monomer is in low concentration, it can be used as an amine component of a redox initiation... [Pg.230]

These equations are in accordance with redox initiated poymerization rate Equation 1. [Pg.231]

Several articles [7,8] have reported that a persulfate-amine system, particularly persulfate-triethanol amine and persulfate-tetramethylethylenediamine (TMEDA) can be used as redox initiators in aqueous solution polymerization of vinyl monomers. Recently, we studied the effect of various amines on the AAM aqueous solution polymerization and found that not only tertiary amine but also secondary and even primary aliphatic amine and their polyamines can promote the vinyl polymerization as shown in Table 6 [40-42]. [Pg.232]

For aliphatic diamines [40] it is shown that TMEDA is the well-known and most effective redox initiation system with APS. The data for the effects of the diamines on AAM polymerization with APS are compiled in Table 8. From the structural condition there are three generations, i.e. ... [Pg.232]

In redox initiation, the free radicals that initiate the polymerization are generated as transient intermediates in the course of redox reaction. Essentially this involves an electron transfer process followed by scission to give free radicals. A wide variety of redox reactions, involving both organic and inorganic components either wholly... [Pg.485]

Recently, in our laboratory the following novel Ce(IV) ion redox initiation systems have been investigated for vinyl radical polymerization. [Pg.542]


See other pages where Redox initiator is mentioned: [Pg.142]    [Pg.143]    [Pg.278]    [Pg.280]    [Pg.283]    [Pg.497]    [Pg.437]    [Pg.524]    [Pg.524]    [Pg.169]    [Pg.488]    [Pg.317]    [Pg.826]    [Pg.170]    [Pg.195]    [Pg.195]    [Pg.196]    [Pg.227]    [Pg.229]    [Pg.230]    [Pg.373]    [Pg.485]    [Pg.486]    [Pg.487]    [Pg.541]    [Pg.541]    [Pg.541]    [Pg.542]    [Pg.543]    [Pg.543]    [Pg.545]    [Pg.547]   
See also in sourсe #XX -- [ Pg.195 ]

See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.104 ]

See also in sourсe #XX -- [ Pg.312 ]

See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.436 ]

See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.477 ]




SEARCH



Ceric ion redox initiation systems

Chain initiation redox

Chemical reactions redox-initiated

Dibenzoyl peroxide redox initiation systems

Heterogeneous redox-initiated graft

Hydrogen peroxide-ascorbic acid redox initiator

Initiation redox

Initiation redox

Irradiation of Thermal and Redox Initiators

Persulfate redox initiation

Polymerization with Redox Systems as Initiators

Proteins redox oxidation initiated

Redox initiating methods

Redox initiation systems

Redox initiators metal complex/organic halide

Redox initiators transition metal salts effects

Redox initiators with alkyl hydroperoxides

Redox initiators with ceric ions

Redox initiators with hydrogen peroxide

Redox initiators with inorganic peroxides

Redox polymerization-initiating

Redox polymerization-initiating systems

Redox reaction initiation

Redox systems initiators

Redox-initiated graft copolymerization

Redox-initiated polymerization rate equation

Surface grafting, redox initiators

Transition metal salts/complexes redox initiation

Types of Redox Initiators

© 2024 chempedia.info