Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Controlled free-radical polymerization

Radical grafting, 10 206 Radical-induced decompositions, 14 280 of dialkyl peroxydicarbonates, 14 289 Radical ozone reactions, 17 774 Radical polymerization, 22 40. See also Free-radical polymerization controlling, 14 297 of methacrylic ester polymers, 16 279-290... [Pg.784]

Matyjaszewski et al. systematically investigated the effect of electron donors (ED), such as pyridine and triethylamine, on the CRP of VAc with Co(acac)2. They proposed that the polymerization mechanism of VAc with Co(acac)2 in the absence of electron donor was a degenerative transfer process as shown in scheme 3(a). The polymerization in the presence of electron donor was a stable free radical polymerization controlled by the reversible homolytic cleavage of cobalt(III) dormant species as shown in scheme 3 (b). ... [Pg.143]

For obtaining polymers with predetermined molecular weights, low PDI, specific functionalities, and diverse architecture than in conventional free-radical polymerization, controlled radical polymerization (GRP) methods were developed. There are a number of reports that enhanced rates and low polydispersity indices were observed for atom transfer radical polymerization (ATRP) under microwave conditions similarly, significant rate enhancements were reported for reversible addition-fragmentation chain transfer (RAFT) and nitroxide-mediated polymerization (NMP). [Pg.987]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

The previous sections show that certain ionic liquids, namely the chloroalumi-nate(III) ionic liquids, are capable of acting both as catalyst and as solvent for the polymerization of certain olefins, although in a somewhat uncontrolled manner, and that other ionic liquids, namely the non-chloroaluminate(III) ionic liquids, are capable of acting as solvents for free radical polymerization processes. In attempts to carry out polymerization reactions in a more controlled manner, several studies have used dissolved transition metal catalysts in ambient-temperature ionic liquids and have investigated the compatibility of the catalyst towards a range of polymerization systems. [Pg.326]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Reaction conditions for the free radical polymerization of ethylene are 100-200°C and 100-135 atmospheres. Ethylene conversion is kept to a low level (10-25%) to control the heat and the viscosity. However, overall conversion with recycle is over 95%. [Pg.326]

For example, the molecular weight of unsaturated polyesters is controlled to less than 5000 g/mol. The low molecular weight of the unsaturated polyester allows solvation in vinyl monomers such as styrene to produce a low-viscosity resin. Unsaturated polyesters are made with monomers containing carbon-carbon double bonds able to undergo free-radical crosslinking reactions with styrene and other vinyl monomers. Crosslinking the resin by free-radical polymerization produces the mechanical properties needed in various applications. [Pg.4]

The overall reactions involved in a free radical polymerization are described in the Appendix. It is interesting however, to look into several reaction steps which contain the key reaction parameters and control the rate of production and the molecular weights of the polymer. [Pg.224]

Equation (l) shows the rate of polymerization is controlled by the radical concentration and as described by Equation (2) the rate of generation of free radicals is controlled by the initiation rate. In addition. Equation (3) shows this rate of generation is controlled by the initiator and initiator concentration. Further, the rate of initiation controls the rate of propagation which controls the rate of generation of heat. This combined with the heat transfer controls the reaction temperature and the value of the various reaction rate constants of the kinetic mechanism. Through these events it becomes obvious that the initiator is a prime control variable in the tubular polymerization reaction system. [Pg.226]

Generalization of Flory s Theory for Vinyl/Divinyl Copolvmerization Using the Crosslinkinq Density Distribution. Flory s theory of network formation (1,11) consists of the consideration of the most probable combination of the chains, namely, it assumes an equilibrium system. For kinetically controlled systems such as free radical polymerization, modifications to Flory s theory are necessary in order for it to apply to a real system. Using the crosslinking density distribution as a function of the birth conversion of the primary molecule, it is possible to generalize Flory s theory for free radical polymerization. [Pg.249]

Phosphoranyl radicals can be involved [77] in RAFT processes [78] (reversible addition fragmentation transfer) used to control free radical polymerizations [79]. We have shown [77] that tetrathiophosphoric acid esters are able to afford controlled/living polymerizations when they are used as RAFT agents. This result can be explained by addition of polymer radicals to the P=S bond followed by the selective p-fragmentation of the ensuing phosphoranyl radicals to release the polymer chain and to regenerate the RAFT agent (Scheme 41). [Pg.66]

Free radical polymerization Relatively insensitive to trace impurities Reactions can occur in aqueous media Can use chain transfer to solvent to modify polymerization process Structural irregularities are introduced during initiation and termination steps Chain transfer reactions lead to reduced molecular weight and branching Limited control of tacticity High pressures often required... [Pg.42]

By contrast, much of the work performed using ruthenium-based catalysts has employed well-defined complexes. These have mostly been studied in the ATRP of MMA, and include complexes (158)-(165).400-405 Recent studies with (158) have shown the importance of amine additives which afford faster, more controlled polymerization.406 A fast polymerization has also been reported with a dimethylaminoindenyl analog of (161).407 The Grubbs-type metathesis initiator (165) polymerizes MMA without the need for an organic initiator, and may therefore be used to prepare block copolymers of MMA and 1,5-cyclooctadiene.405 Hydrogenation of this product yields PE-b-PMMA. N-heterocyclic carbene analogs of (164) have also been used to catalyze the free radical polymerization of both MMA and styrene.408... [Pg.21]

The architecture of macromolecules is another important synthetic variable. New materials with controlled branching sequences or stereoregularity provide tremendous opportunity for development. New polymerization catalysts and initiators for controlled free-radical polymerization are driving many new materials design, synthesis, and production capabilities. Combined with state-of-the-art characterization by probe microscopy, radiation scattering, and spectroscopy, the field of polymer science is poised for explosive development of novel and important materials. New classes of nonlinear structured polymeric materials have been invented, such as dendrimers. These structures have regularly spaced branch points beginning from a central point—like branches from a tree trunk. New struc-... [Pg.126]

The % Conversion at Stall Time Vs the Rate of Polymerization. In a normal free radical polymerization, the rate of polymerization stalls at certain time when the mobility of molecules, including those of propagating radicals, decrease to a certain level. After that, the rate of polymerization diminishes and it becomes a diffusion controlled reaction. Table VI lists some representative % of conversion at the stall time for randomly selected HEMA-based monomer mixes with different initiators at different concentration(s). They indicated that faster polymerization rate led to higher conversion of... [Pg.46]

Significant improvement in controlled polymerizations of a variety monomers, including styrene, acrylates, acrylamide, acrylonitrile, 1,3-dienes, and maleic anhydride has been achieved when alkoxyamines have been used as initiators for living, free radical polymerization.(696c, 697) Alkoxyamines can be easily synthesized in situ by the double addition of free radicals, generated by thermal decomposition of an azo-initiator, such as 2,2 -azo-h/.s-/.so-butyronitrile (AIBN), to nitrones (Scheme 2.206). [Pg.295]

A number of different materials were used as chain transfer agents to control molecular weight. These results are shown in Table 6.1. The effect of varying concentration of t-butyl alcohol and reaction temperature is shown in Figure 6.1. The results are consistent with normal free radical polymerizations. Polymer output was characterized by inherent viscosity and ZST tests. [Pg.83]

Controlled expansion alloys, 13 520-522 Controlled flavor release systems, 11 528, 543-553, 554-555 characteristics of, ll 544t demand for, 11 555 developments in, 11 558 elements of, 11 555-557 extrusion encapsulation for, 11 550 key aspects of, 11 556t morphologies of, 11 545 Controlled free-radical polymerization, block copolymers, 7 646 Controlled humidity drying, ceramics processing, 5 655-656 Controlled indexing, 18 241 Controlled initiation, 14 268-269 Controlled laboratory studies, in... [Pg.214]

He also prepared a poly(styrene-g-styrene) polymer by this technique [114], The lack of crosslinking in these systems is indeed proof of the control achieved with this technique. An eight-arm star polystyrene has also been prepared starting from a calixarene derivative under ATRP conditions [115]. On the other hand, Sawamoto and his coworkers used multifunctional chloroacetate initiator sites and mediation with Ru2+ complexes for the living free-radical polymerization of star poly(methylmethacrylate) [116,117]. More recent work by Hedrick et al. [84] has demonstrated major progress in the use of dendritic initiators [98] in combination with ATRP and other methodologies to produce a variety of structure controlled, starlike poly(methylmethacrylate). [Pg.86]


See other pages where Controlled free-radical polymerization is mentioned: [Pg.223]    [Pg.48]    [Pg.223]    [Pg.223]    [Pg.48]    [Pg.223]    [Pg.103]    [Pg.476]    [Pg.227]    [Pg.64]    [Pg.475]    [Pg.107]    [Pg.322]    [Pg.1]    [Pg.109]    [Pg.110]    [Pg.319]    [Pg.319]    [Pg.119]    [Pg.87]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.23]    [Pg.204]    [Pg.210]    [Pg.659]    [Pg.193]    [Pg.102]    [Pg.54]    [Pg.180]    [Pg.205]   
See also in sourсe #XX -- [ Pg.14 , Pg.18 ]




SEARCH



Controlled polymerization

Controlled radical

Controlled radical polymerization

Polymerization free radical

© 2024 chempedia.info