Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonic acids with ethers

OaN-C-C(CHs)-C-NOa (decomp) and defgr when heated to higher temps. Sol in ale, ethyl acetate and ether. Was obtained (tog ether with 3,5-din itro-p-xylene-2-diazoniumnitrate) by treating. 5-amino-p-xyIene-2-sulfonic acid with HN03 (d 1.51) at -5°- Its expl props were not investigated... [Pg.272]

Reaction of the sulfonic acid with alcoholates or phenolates produces the ethers of erythrohydroxyanthraquinone (1-hydroxyanthraquinone) ... [Pg.132]

The major subgroups of anionic surfactants include the alkali carboxylates (soaps), sulfates, sulfonates, and to a smaller degree, phosphates. The esterification of alcohol with sulfuric acid yields probably the best-studied surfactant, sodium dodecylsulfate or SDS. SDS, a sulfate ester, is an extremely effective emulsifier because of its high-electrostatic repulsion. Other sulfates are, for example, sulfated esters from fatty acids, sulfated ethers, and sulfated fats and oils. Sulfonates stem from the reaction of sulfonic acid with suitable substrates. Members of the class of sulfonates are, for example, sulfonic acid salts or aliphatic sulfonates. Other anionic surfactants include substances such as carboxylated soaps and esters of phosphoric acid. [Pg.1829]

Diaziridines and diazirines [1,483]. A Lederle group13 investigated the reaction of hydroxylamine-O-sulfonic acid with steroid ketones and found that only noncon-jugated 2(5a)-ketones and 3(5a or 5/3)-ketones react. A4-3-Ketosteroids, 17-keto-steroids, and 20-ketosteroids were found unreactive. A solution of 502 mg. of 17a-methyl-5a-androstane-17/3-ol-3-one (1) in methanol was saturated with ammonia at 2° and treated with 236 mg. of hydroxylamine-O-sulfonic acid, added in small portions. The diaziridine (2) was oxidized with silver oxide in ether in practically quantitative yield to the diazirine (3). [Pg.113]

Poly(phenylene ether) s with pendant perfluoroalkyl sulfonic acids with an ion exchange capacity of 1.17-1.83 equivalents/g have been synthesized by an aromatic nucleophilic substitution reaction of a perfluo-romonomer, such as decafluorobiphenyl or hexafluo-robenzene with 2,5-bis(4 -iodophenyl)hydroquinone, followed by a Ullman coupling reaction with potassium 1,1,2,2-tetrafluoro-2-(l, 1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonate [100]. [Pg.119]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

Anhydrous sulfonic acids, particularly linear alkylben2enesulfonic acids, are typically stored ia stainless steel containers, preferably type 304 or 316 stainless steel. Use of other metals, such as mild steel, contaminates the acid with iron (qv), causiag a darkening of the acid over time (27). The materials are usually viscous oils which may be stored and handled at 30—35°C for up to two months (27). AH other detergent-grade sulfonic acids, eg, alcohol sulfates, alcohol ether sulfates, alpha-olefin sulfonates, and alpha-sulfomethyl esters, are not stored owiag to iastabiUty. These are neutrali2ed to the desired salt. [Pg.98]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

Sulfonates with ether linkages include ring-sulfonated alkylphenol ethoxylates and a disulfonated alkyldiphenyl oxide, Dowfax 2A1, and 3B2 (Dow Chemical Company). This surfactant is characterized by high solubiUty in salt solutions, strong acids, or bases. It is used in industrial and institutional cleaners. [Pg.242]

Ethers. In the presence of anhydrous agents such as ferric chloride (88), hydrogen bromide, and acid chlorides, ethers react to form esters (see Ethers). Esters can also be prepared from ethers by an oxidative process (89). With mixed sulfonic—carboxyhc anhydrides, ethers are converted to a mixture of the corresponding carboxylate and sulfonate esters (90) ... [Pg.381]

In a 250 ml Erlenmeyer flask covered with aluminum foil, 14.3 g (0.0381 mole) of 17a-acetoxy-3j5-hydroxypregn-5-en-20-one is mixed with 50 ml of tetra-hydrofuran, 7 ml ca. 0.076 mole) of dihydropyran, and 0.15 g of p-toluene-sulfonic acid monohydrate. The mixture is warmed to 40 + 5° where upon the steroid dissolves rapidly. The mixture is kept for 45 min and 1 ml of tetra-methylguanidine is added to neutralize the catalyst. Water (100 ml) is added and the organic solvent is removed using a rotary vacuum evaporator. The solid is taken up in ether, the solution is washed with water and saturated salt solution, dried over sodium sulfate, and then treated with Darco and filtered. Removal of the solvent followed by drying at 0.2 mm for 1 hr affords 18.4 g (theory is 17.5 g) of solid having an odor of dihydropyran. The infrared spectrum contains no hydroxyl bands and the crude material is not further purified. This compound has not been described in the literature. [Pg.56]

Ethylenedioxy-2l-acetoxypregn-4-en-3-one A solution containing 3,3 20,20-bisethylenedioxypregn-5-en-21-ol acetate (120 mg) and /7-toluene-sulfonic acid hydrate (12 mg) in dry acetone (3 ml) is allowed to stand at 22° for 14 hr. Sodium bicarbonate solution and ether are added and the organic layer is separated, washed with water, dried and evaporated. Crystallization of the residue from hexane yields 81 mg (75%) of 20-monoketal, mp 140-141°. [Pg.408]

In further modifications of these norprogestins, reaction of norethindrone with acetic anhydride in the presence of p-toluene-sulfonic acid, followed by hydrolysis of the first-formed enol acetate, affords norethindrone acetate (41). This in turn affords, on reaction with excess cyclopentanol in the presence of phosphorus pentoxide, the 3-cyclopentyl enol ether (42) the progestational component of Riglovic . Reduction of norethindrone affords the 3,17-diol. The 33-hydroxy compound is the desired product since reactions at 3 do not show nearly the stereoselectivity of those at 17 by virtue of the relative lack of stereo-directing proximate substituents, the formation of the desired isomer is engendered by use of a bulky reducing agent, lithium aluminum-tri-t-butoxide. Acetylation of the 33,173-diol iffords ethynodiol diacetate, one of the most potent oral proves tins (44). ... [Pg.165]

Amino-5-phenylthiomethoxyacetanilide in methanol solution is heated with N,N -bis-meth-oxycarbonyl-isothiourea-S-methyl ether with the addition of a catalytic amount of p-toluene-sulfonic acid for three hours with stirring under reflux. The mixture is then filtered hot and after cooling the febantel product crystallizes out. It is filtered off, rinsed with ether and dried under high vacuum to give the final product, melting at 129°C to 130°C. [Pg.618]

A Preparation of 11 -Methoxy-A -Estradiene-3,17-Dione 0.5 g of A -estradiene-11/3-ol-3,17-dione were dissolved at room temperature in 25 cc of methylene chloride containing 2% of methanol and after 5 mg of p-toluene-sulfonic acid were added, the reaction mixture was agitated for several minutes. Then the reaction mixture was poured into ice water, washed with water until the wash waters were neutral, and distilled to dryness under vacuum. The resulting residue was crystallized from ethyl ether to obtain 0.46 g of 11/3-methoxy-A -estradiene-3,17-dione having a MP of 140°C. [Pg.1041]

The decanted aqueous phase was extracted three times with a total of 150 ml of ethyl acetate. The combined organic solutions were filtered over Clarcel and extracted three times with a total of 150 ml of an Iced normal aqueous methane-sulfonic acid solution. The combined acid extracts were rendered alkaline on an ice bath with 30 ml of ION caustic soda solution. The separated oil was extracted four times with a total of 200 ml of ether. The combined ethereal extracts were washed twelve times with a totai of 360 ml of distilled water, dried over anhydrous magnesium sulfate in the presence of 0.3 g of animal charcoal and evaporated under reduced pressure on a water bath at 40°C. The oily residue obtained (3.8 g) was dissolved in 30 ml of boiling acetonitrile. After cooling for 2 hours at 3°C, the crystals formed were separated, washed with 5 ml of acetonitrile and dried at ambient temperature at low pressure. [Pg.1347]

The C2-symmetric epoxide 23 (Scheme 7) reacts smoothly with carbon nucleophiles. For example, treatment of 23 with lithium dimethylcuprate proceeds with inversion of configuration, resulting in the formation of alcohol 28. An important consequence of the C2 symmetry of 23 is that the attack of the organometallic reagent upon either one of the two epoxide carbons produces the same product. After simultaneous hydrogenolysis of the two benzyl ethers in 28, protection of the 1,2-diol as an acetonide ring can be easily achieved by the use of 2,2-dimethoxypropane and camphor-sulfonic acid (CSA). It is necessary to briefly expose the crude product from the latter reaction to methanol and CSA so that the mixed acyclic ketal can be cleaved (see 29—>30). Oxidation of alcohol 30 with pyridinium chlorochromate (PCC) provides alde-... [Pg.429]

Salts of diazonium ions with certain arenesulfonate ions also have a relatively high stability in the solid state. They are also used for inhibiting the decomposition of diazonium ions in solution. The most recent experimental data (Roller and Zollinger, 1970 Kampar et al., 1977) point to the formation of molecular complexes of the diazonium ions with the arenesulfonates rather than to diazosulfonates (ArN2 —0S02Ar ) as previously thought. For a diazonium ion in acetic acid/water (4 1) solutions of naphthalene derivatives, the complex equilibrium constants are found to increase in the order naphthalene < 1-methylnaphthalene < naphthalene-1-sulfonic acid < 1-naphthylmethanesulfonic acid. The sequence reflects the combined effects of the electron donor properties of these compounds and the Coulomb attraction between the diazonium cation and the sulfonate anions (where present). Arenediazonium salt solutions are also stabilized by crown ethers (see Sec. 11.2). [Pg.26]

Besides the use of anionics such as sulfonates and nonionics such as alkyl-phenol ethoxylates, in 1977 the use of ether carboxylates was also described [183] in terms of its excellent temperature, electrolyte, and hard water stability and low interfacial tension, especially in case of the C12-C14 ether carboxylic acid with 4.5 mol EO. [Pg.343]

Ci2-Ci3 ether carboxylic acid with 4.5-6 mol EO and Ci2-C15 ether carboxylic acid with 9 mol EO as cosurfactant improve the use of alkyl-o-xylene-sulfonate as primary surfactant at different salinity while maintaining good oil solubilization [189]. It is possible to optimize the surfactant system in relation to the crude oil reservoir characteristics. [Pg.343]

Results described in the literature have resulted in several patents, such as one for the improvement of the transport of viscous crude oil by microemulsions based on ether carboxylates [195], or combination with ether sulfate and nonionics [196], or several anionics, amphoterics, and nonionics [197] increased oil recovery with ether carboxylates and ethersulfonates [198] increased inversion temperature of the emulsion above the reservoir temperature by ether carboxylates [199], or systems based on ether carboxylate and sulfonate [200] or polyglucosylsorbitol fatty acid ester [201] and eventually cosolvents which are not susceptible for temperature changes. Ether carboxylates also show an improvement when used in a C02 drive process [202] or at recovery by steam flooding [203]. [Pg.344]

Alternatively, the 3- and 4-hydroxy sulfonates may be converted to the corresponding sultones by treatment with a strong mineral acid. An ether extract concentrates the organic components, sultones, and alkenesulfonic acid, which can be weighed and titrated potentiometrically with sodium hydroxide. 2-Hydroxyalkanesulfonate will not dehydrate to the sultone under these conditions and is not measured. [Pg.435]


See other pages where Sulfonic acids with ethers is mentioned: [Pg.98]    [Pg.98]    [Pg.98]    [Pg.98]    [Pg.152]    [Pg.467]    [Pg.272]    [Pg.272]    [Pg.209]    [Pg.85]    [Pg.172]    [Pg.134]    [Pg.578]    [Pg.538]    [Pg.61]    [Pg.173]    [Pg.388]    [Pg.409]    [Pg.444]    [Pg.161]    [Pg.170]    [Pg.398]    [Pg.788]    [Pg.1398]    [Pg.96]    [Pg.134]    [Pg.702]    [Pg.650]    [Pg.480]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Ether Acids

Ether sulfones

Ethers sulfonic acids

Ethers, acidity

Ethers, vinyl with sulfonic acids

Sulfonic acids, addition with ethers

© 2024 chempedia.info