Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon with nucleophiles

The ROP of six-membered cyclic carbonates with nucleophilic initiators is a chain reaction in which, besides initiation and propagation reactions, transesterification reactions can also take place (Scheme 32).Intramolecular nucleophile (e.g., alkoxide) attacks on carbonyl carbon atom (backbiting) lead to cyclic oligomers, while intermolecular transesterifica-tion leads to a change of the macromolecule length with the consequence that, at equilibrium, the most probable distribution of the molecular weight is obtained (Scheme 32). [Pg.264]

Scheme 32 Anionic polymerization of six-membered cyclic carbonate with nucleophilic initiators. Scheme 32 Anionic polymerization of six-membered cyclic carbonate with nucleophilic initiators.
Scheme 12.1 Ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (a model monomer for cyclic carbonates) with nucleophilic initiators an equilibrium polymerization. Scheme 12.1 Ring-opening polymerization of 2,2-dimethyltrimethylene carbonate (a model monomer for cyclic carbonates) with nucleophilic initiators an equilibrium polymerization.
In the synthesis of molecules without functional groups the application of the usual polar synthetic reactions may be cumbersome, since the final elimination of hetero atoms can be difficult. Two solutions for this problem have been given in the previous sections, namely alkylation with nucleophilic carbanions and alkenylation with ylides. Another direct approach is to combine radical synthons in a non-polar reaction. Carbon radicals are. however, inherently short-lived and tend to undergo complex secondary reactions. Escheirmoser s principle (p. 34f) again provides a way out. If one connects both carbon atoms via a metal atom which (i) forms and stabilizes the carbon radicals and (ii) can be easily eliminated, the intermolecular reaction is made intramolecular, and good yields may be obtained. [Pg.36]

Epoxide opening with nucleophiles occurs at the less substituted carbon atom of the oxlrane ting. Cataiytic hydrogenolysis yields the more substituted alcohol. The scheme below contains also an example for trons-dibromination of a C—C double bond followed by dehy-drobromination with strong base for overall conversion into a conjugated diene. The bicycKc tetraene then isomerizes spontaneously to the aromatic l,6-oxido[l0]annulene (E. Vogel, 1964). [Pg.123]

The benzylidene derivative above is used, if both hydroxyl groups on C-2 and C-3 are needed in synthesis. This r/vzns-2,3-diol can be converted to the sterically more hindered a-cpoxide by tosylation of both hydroxy groups and subsequent treatment with base (N.R. Williams, 1970 J.G. Buchanan, 1976). An oxide anion is formed and displaces the sulfonyloxy group by a rearside attack. The oxirane may then be re-opened with nucleophiles, e.g. methyl lithium, and the less hindered carbon atom will react selectively. In the following sequence starting with an a-glucoside only the 2-methyl-2-deoxyaltrose is obtained (S. Hanessian, 1977). [Pg.269]

TT-Allylpalladium chloride (36) reacts with the nucleophiles, generating Pd(0). whereas tr-allylnickel chloride (37) and allylmagnesium bromide (38) reacts with electrophiles (carbonyl), generating Ni(II) and Mg(II). Therefore, it is understandable that the Grignard reaction cannot be carried out with a catalytic amount of Mg, whereas the catalytic reaction is possible with the regeneration of an active Pd(0) catalyst, Pd is a noble metal and Pd(0) is more stable than Pd(II). The carbon-metal bonds of some transition metals such as Ni and Co react with nucleophiles and their reactions can be carried out catalytic ally, but not always. In this respect, Pd is very unique. [Pg.17]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

Various S-nucleophiles are allylated. Allylic acetates or carbonates react with thiols or trimethylsilyl sulfide (353) to give the allylic sulfide 354[222], Allyl sulfides are prepared by Pd-catalyzed allylic rearrangement of the dithio-carbonate 355 with elimination of COS under mild conditions. The benzyl alkyl sulfide 357 can be prepared from the dithiocarbonate 356 at 65 C[223,224], The allyl aryl sufide 359 is prepared by the reaction of an allylic carbonate with the aromatic thiol 358 by use of dppb under neutral condi-tions[225]. The O-allyl phosphoro- or phosphonothionate 360 undergoes the thiono thiolo allylic rearrangement (from 0-allyl to S -allyl rearrangement) to afford 361 and 362 at 130 C[226],... [Pg.338]

Predict which carbon undergoes nucleophilic attack on acid catalyzed ring opening of cis 3 3 3 tnfluoro 2 3 epoxybutane Examine the C—O bond distances of the protonated form of the epoxide on Learning By Modeling How do these bond distances compare with your prediction" ... [Pg.702]

Nucleophilic Reactions. The strong electronegativity of fluorine results in the facile reaction of perfluoroepoxides with nucleophiles. These reactions comprise the majority of the reported reactions of this class of compounds. Nucleophilic attack on the epoxide ring takes place at the more highly substituted carbon atom to give ring-opened products. Fluorinated alkoxides are intermediates in these reactions and are in equiUbrium with fluoride ion and a perfluorocarbonyl compound. The process is illustrated by the reaction of methanol and HFPO to form methyl 2,3,3,3-tetrafluoro-2-methoxypropanoate (eq. 4). [Pg.303]

The susceptibihty of dialkyl peroxides to acids and bases depends on peroxide stmcture and the type and strength of the acid or base. In dilute aqueous sulfuric acid (<50%) di-Z fZ-butyl peroxide is resistant to reaction whereas in concentrated sulfuric acid this peroxide gradually forms polyisobutylene. In 50 wt % methanolic sulfuric acid, Z fZ-butyl methyl ether is produced in high yield (66). In acidic environments, unsymmetrical acychc alkyl aralkyl peroxides undergo carbon—oxygen fission, forming acychc alkyl hydroperoxides and aralkyl carbonium ions. The latter react with nucleophiles,... [Pg.107]

The LUMO, which is the frontier orbital in reactions with nucleophiles, has a larger coefficient on the /3-carbon atom, whereas the two occupied orbitals are distorted in such a way as to have larger coefficients on oxygen. The overall effect is that the LUMO is relatively low-lying and has a high coefficient on the /3-carbon atom. The frontier orbital theory therefore predicts that nucleophiles will react preferentially at the /3-carbon atom. [Pg.49]

If the addition of Br to the alkene results in a bromonium ion, the anti stereochemistry can be readily eiqilained. Nucleophilic ring opening by bromide ion would occur by backside attack at carbon, with rupture of one of the C—Br bonds, giving overall anti addition. [Pg.362]

Miller et al. [9] hypothesized rules on the regioselectivity of addition from the study of the base-catalyzed addition of alcohols to chlorotnfluoroethylene. Attack occurs at the vinylic carbon with most fluorines. Thus, isomers of dichloro-hexafl uorobutene react with methanol and phenol to give the corresponding saturated and vinylic ethers The nucleophiles exclusively attack position 3 of 1,1-dichloro-l,2,3,4,4,4-hexafluoro-2-butene and position I of 4,4-dichloro-l,l,2,3,3,4-hexafluoro-1-butene [10]. In I, l-dichloro-2,3,3,4,4,4-hexafluoro-l-butene, attack on position 2 is favored [J/] (equation 5) Terminal fluoroolefms are almost invariably attacked at tbe difluoromethylene group, as illustrated by the reaction of sodium methoxide with perfluoro-1-heptene in methanol [/2J (equation 6). [Pg.730]

Reactions at the carbon-nitrogen double bond of iminium salts are analogous to nucleophilic reactions at the carbonyl group of aldehydes and ketones. This is why free enamines do not react with nucleophilic reagents, whereas their salts can undergo such reactions. [Pg.286]

This trend is also observed in the reactions with nitrogen- and carbon-centered nucleophiles (2001H425). Thus, the reaction of 109 with sodium indolyl in DMF affords methyl 2-(indol-l-yl)indole-3-carboxylate (188, 77%). In better yield, 2-(indol-l-yl)indole-3-carbaldehyde (189, 95%) is formed in the corresponding reaction (99H1157) of 115a (Scheme 28). Sodium imidazolyl reacts with 109 in DMF at 60°C to afford methyl 2-(imidazol-l-yl)indole-3-carboxylate (190,28%), methyl indole-3-carboxylate (191,11 %), and unreacted 109 (36%). In contrast, under the same conditions, 110 and 115a provide higher yields of methyl 2-(imidazol-... [Pg.127]


See other pages where Carbon with nucleophiles is mentioned: [Pg.872]    [Pg.70]    [Pg.139]    [Pg.140]    [Pg.872]    [Pg.70]    [Pg.139]    [Pg.140]    [Pg.316]    [Pg.310]    [Pg.318]    [Pg.321]    [Pg.434]    [Pg.168]    [Pg.305]    [Pg.108]    [Pg.76]    [Pg.432]    [Pg.99]    [Pg.156]    [Pg.618]    [Pg.635]    [Pg.754]    [Pg.11]    [Pg.47]    [Pg.371]    [Pg.731]    [Pg.997]    [Pg.329]    [Pg.89]    [Pg.198]    [Pg.198]    [Pg.302]    [Pg.270]    [Pg.85]    [Pg.100]   
See also in sourсe #XX -- [ Pg.326 , Pg.327 , Pg.328 ]




SEARCH



Allylic with carbon nucleophiles

Carbene with carbon nucleophiles

Carbon disulfide with nucleophiles

Carbon disulfide, reaction with nucleophiles

Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles synthesis reactions with

Carbon nucleophiles, addition with

Carbon nucleophiles, reactions with aryne

Carbon reaction with nucleophile

Carbon-containing nucleophiles opening with

Chloromethyl with carbon nucleophiles

Coupling with carbon nucleophiles

Cross-coupling reaction with carbon nucleophiles

Electrophilic cyclopropanes reaction with carbon nucleophiles

Epoxides opening with carbon nucleophiles

Isatins with carbon nucleophiles

Metal—carbon triple bonds nucleophiles, reactions with

Nucleophilic addition reactions with carbon nucleophiles

Nucleophilic reactions with electrophilic carbon moieties

Organic synthesis with carbon nucleophiles

Propargylic Substitution Reactions with Carbon-Centered Nucleophiles

Reaction of Carbon Nucleophiles with Carbonyl Groups

Reaction with Carbon Nucleophiles (and Homologs)

Reactions of Carbonyl Compounds with Other Carbon Nucleophiles

Reactions of Nucleophiles with sp Hybridised Carbon Centres

Reactions of Nucleophiles with sp2 Hybridised Carbon Centres

Reactions of Nucleophiles with sp3 Hybridised Carbon Centres

Reactions with Carbon Nucleophiles

Reactions with Nucleophilic Carbon Compounds

Reactions with Other Carbon Nucleophiles

Rhodium-Catalyzed Allylic Alkylation Reaction with Stabilized Carbon Nucleophiles

Synthesis via coupling aromatic diazonium salts with carbon nucleophilic 4 atom fragments

With Enamines and Carbon Nucleophiles

© 2024 chempedia.info