Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene, copolymers with 2- hydroxyethyl acrylate

Other NAD microspheres are composed of styrene, MM A, hydroxyethyl acrylate, acrylic acid and acrylonitrile and are blended with acrylic copolymers and melamine/formaldehyde resins [341,342]. Particles of this polymer are used as rheology modifiers to prevent sagging in automotive coatings and for controlling the orientation of metal flake pigments. [Pg.223]

Copolymers of acrylonitrile and methyl acrylate and terpolymers of acrylonitrile, styrene, and methyl methacrylate are used as bamer polymers. Acrylonitrile copolymers and multipolymers containing butyl acrylate, ethyl aciylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methaciylate. vinyl acetate, vinyl ethers, and vinylidene chlonde are also used in bamer films, laminates, and coatings. Environmentally degradable polymers useful in packaging are prepared from polymerization of acrylonitrile with styrene and methyl vinyl ketone. [Pg.21]

Most research into the study of dispersion polymerization involves common vinyl monomers such as styrene, (meth)acrylates, and their copolymers with stabilizers like polyvinylpyrrolidone (PVP) [33-40], poly(acrylic acid) (PAA) [18,41],poly(methacrylicacid) [42],or hydroxypropylcellulose (HPC) [43,44] in polar media (usually alcohols). However, dispersion polymerization is also used widely to prepare functional microspheres in different media [45, 46]. Some recent examples of these preparations include the (co-)polymerization of 2-hydroxyethyl methacrylate (HEMA) [47,48],4-vinylpyridine (4VP) [49], glycidyl methacrylate (GMA) [50-53], acrylamide (AAm) [54, 55], chloro-methylstyrene (CMS) [56, 57], vinylpyrrolidone (VPy) [58], Boc-p-amino-styrene (Boc-AMST) [59],andAT-vinylcarbazole (NVC) [60] (Table 1). Dispersion polymerization is usually carried out in organic liquids such as alcohols and cyclohexane, or mixed solvent-nonsolvents such as 2-butanol-toluene, alcohol-toluene, DMF-toluene, DMF-methanol, and ethanol-DMSO. In addition to conventional PVP, PAA, and PHC as dispersant, poly(vinyl methyl ether) (PVME) [54], partially hydrolyzed poly(vinyl alcohol) (hydrolysis=35%) [61], and poly(2-(dimethylamino)ethyl methacrylate-fo-butyl methacrylate)... [Pg.303]

A significant number of works are concerned with the development of new membranes for the separation of mixtures of aromatic/alicyclic hydrocarbons [10,11,77-109]. For example, the following works can be mentioned. A mixture of cellulose ester and polyphosphonate ester (50 wt%) was used for benzene/cyclohexane separation [113]. High values of the separation factor and flux were achieved (up to 2 kg/m h). In order to achieve better fluxes and separation factors the attention was shifted to the modification of polymers by grafting technique. Grafted membranes were made of polyvinylidene fluoride with 4-vinyl pyridine or acrylic acid by irradiation [83]. 2-Hydroxy-3-(diethyl-amino) propyl methacrylate-styrene copolymer membranes with cyanuric chloride were prepared, which exhibited a superior separation factor /3p= 190 for a feed aromatic component concentration of 20 wt%. Graft copolymer membranes based on 2-hydroxyethyl methylacrylate-methylacrylate with thickness 10 pm were prepared [85]. The membranes yielded a flux of 0.7 kg/m h (for feed with 50 wt% of benzene) and excellent selectivity. Benzene concentration in permeate was about 100 wt%. A membrane based on polyvinyl alcohol and polyallyl amine was prepared [87]. For a feed containing 10 wt% of benzene the blend membrane yielded a flux of 1-3 kg/m h and a separation factor of 62. [Pg.257]

The term acrylic apphes to a family of copolymers of monomers that are polymerized by a chain growth mechanism. Most often, the mechanism of polymerization is by free radical initiation. Other mechanisms of polymerization, such as ionic and group transfer polymerization, are possible but will not be discussed in this publication. For a description of other polymerization mechanisms, polymer textbooks are available (5,6). Technically, acrylic monomers are derivatives of acrylic or methacrylic acid. These derivatives are nonfunctional esters (methyl methacrylate, butyl acrylate, etc.), amides (acrylamide), nitrile (acrylonitrile), and esters that contain functional groups (hydroxyethyl acrylate, glycidyl methacrylate, dimethylaminoethyl acrylate). Other monomers that are not acryhc derivatives are often included as components of acryhc resins because they are readily copolymerized with the acryhc derivatives. Styrene is often used in significant quantities in acryhc copolymers. [Pg.132]

The simplest monomer, ethylenesulfonic acid, is made by elimination from sodium hydroxyethyl sulfonate and polyphosphoric acid. Ethylenesulfonic acid is readily polymerized alone or can be incorporated as a copolymer using such monomers as acrylamide, aHyl acrylamide, sodium acrylate, acrylonitrile, methylacrylic acid, and vinyl acetate (222). Styrene and isobutene fail to copolymerize with ethylene sulfonic acid. [Pg.83]

A large variety of addition copolymers and terpolymers, prepared from hydroxyalkyl acrylates and/or methacrylates have been treated with MA to prepare polymers with pendent maleate residues.An addition polymer prepared from ethyl acrylate-hydroxypropyl methacrylate-styrene was treated sequentially with MA and propylene oxide.Blends of these polymers with vinyl monomers were cured with peroxides to obtain films with physical properties better than regular cured unsaturated polyesters. In another example, a styrene-butyl acrylate-hydroxyethyl methacrylate terpoly-mer was treated with MA to obtain a molding resin.When blended with styrene and cured with peroxides, the molding exhibited low shrink (less than 5%) and Rockwell hardness (M scale) 55. The same chemistry and technology have been explored for preparing radiation-curable coatings. " ... [Pg.504]

In this work we present a theoretical discussion regarding this interaction parameter for 10 polymer-polymer-solvent systems, 4 copolymer-solvent systems along with their corresponding polymer pairs. Our polymer blends are real mixtures of 5 homopolymers consist of poly(N,N-dimethyl methacrylamide) (PDMAA), poly(2-dimethyl aminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA), a typical membrane of commercial soft-contact lens i.e. poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(N-vinyl-2-pyrrolidone) (PVP) all with water solvent. Copolymers studied are poly(acrylonitrile-co-butadiene) in acetonitrile, poly(styrene co acrylonitrile) in 1,2 dichloroethane, poly (acrylonitrile-co butadiene) in hexane and poly (acrylonitrile-co butadiene) in pentane. [Pg.171]

Up to now, poly(methyl methacrylate) and methyl methacrylate copolymers e.g. with styrene, butyl acrylate and dodecyl methacrylate) have been the most widely used acrylic polymers for nanocomposite preparation by emulsion and suspension polymerization. Less research has been based on other acrylic polymers, such as polyacrylonitrile, poly(butyl acrylate), " poly(butyl methacrylate), poly(2-ethylhexyl acrylate), poly(2-hydroxyethyl methacrylate), polyacrylamide, poly(lauryl acrylate)," poly(butyl acrylate-co-styrene)," " poly(acrylonitrile-co-styrene), poly(acrylonitrile-co-meth-acrylate)," poly(ethyl acrylate-co-2-ethylhexyl acrylate)" and poly(2-ethylhexyl acrylate-co-acrylic acid)," and sometimes small amounts of hydophilic acrylic monomers, such as hydroxyethyl methacrylate, methacrylic acid and acrylic acid, have been used as comonomers. " Therefore, it may be stated that, so far, the preparation of acrylic-clay nanocomposites has been based mainly on high glass transition temperature polymers, although nanocomposite materials with lower glass transition temperatures with improved or novel properties, which exhibit a balance of previous antagonistic properties, can also be achieved and are very desirable. Regarding nanocomposites of low glass transition temperature polymers, such as poly(butyl acrylate), poly(ethyl acrylate) and poly(2-ethylhexyl acrylate), which have been utilized as the main components of acrylic pressure-sensitive adhesives, little information is available. [Pg.112]


See other pages where Styrene, copolymers with 2- hydroxyethyl acrylate is mentioned: [Pg.196]    [Pg.378]    [Pg.423]    [Pg.489]    [Pg.83]    [Pg.88]    [Pg.337]    [Pg.157]    [Pg.90]    [Pg.401]    [Pg.217]    [Pg.264]    [Pg.243]    [Pg.489]    [Pg.64]    [Pg.4]    [Pg.119]    [Pg.580]    [Pg.126]    [Pg.35]    [Pg.361]    [Pg.312]    [Pg.527]    [Pg.4]    [Pg.192]    [Pg.189]    [Pg.261]    [Pg.262]    [Pg.210]    [Pg.361]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



2-Hydroxyethyl acrylate

2-Hydroxyethyl acrylate copolymers

Acrylic copolymers

Acrylic styrene

Copolymer acrylate

Hydroxyethylation

Styrene, copolymers with

Styrene-copolymers

Styrene/acrylate copolymers

© 2024 chempedia.info