Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene copolymer with 2- 2-hydroxy

A hindered amine light stabiliser has been found to enhance the light stability of blends of low and linear low density polyethylene with the latter contributing linearly to the overall stability of the blend. In coatings hindered piperidine light stabilisers are also effective especially when used in conjunction with a benzotriazole absorber while surface protection of styrene copolymers with 2-(2-hydroxy-5-vinylphenyl)benzotriazole requires a small amount of a hindered piperidine stabiliser. Polymeric hindered piperidine compounds on the other hand have been found to inhibit the singlet oxygen attack on poly(butadiene). ... [Pg.449]

Fig. 11.46 Plot of spherulite radius as a function of time for poly(ethylene oxide) in blends with either ethylene-methacrylic acid or styrene-hydroxy styrene copolymer. With ethylene-methacrylic acid poly(ethylene oxide)/ethylene-methacrylic acid A 80/20, = 52.5 °C X 70/30, = 48 °C. With styrene-hydroxy styrene ... Fig. 11.46 Plot of spherulite radius as a function of time for poly(ethylene oxide) in blends with either ethylene-methacrylic acid or styrene-hydroxy styrene copolymer. With ethylene-methacrylic acid poly(ethylene oxide)/ethylene-methacrylic acid A 80/20, = 52.5 °C X 70/30, = 48 °C. With styrene-hydroxy styrene ...
Anionic polymerization of lactams was shown to proceed according to what is called the activated monomer mechanism. With bischloroformates of hydroxy-terminated poly(tetramethyleneglycol) and poly(styrene glycol) as precursors for a polymeric initiator containing N-acyl lactam ends, block copolymers with n-pyrrol-idone and e-caprolactam were obtained by bulk polymerizations in vacuum at 30 and 80 °C, respectively361. ... [Pg.30]

II. B polyethylene glycol, ethylene oxide, polystyrene, diisocyanates (urethanes), polyvinylchloride, chloroprene, THF, diglycolide, dilac-tide, <5-valerolactone, substituted e-caprolactones, 4-vinyl anisole, styrene, methyl methacrylate, and vinyl acetate. In addition to these species, many copolymers have been prepared from oligomers of PCL. In particular, a variety of polyester-urethanes have been synthesized from hydroxy-terminated PCL, some of which have achieved commercial status (9). Graft copolymers with acrylic acid, acrylonitrile, and styrene have been prepared using PCL as the backbone polymer (60). [Pg.84]

THERMAL CHARACTERIZATION OF POLY (DIMETHYL SILOXANE) COPOLYMERS WITH POLY (HYDROXY STYRENE) AND 2-METHYL... [Pg.165]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]

Poly[styrene-co-(2-hydroxy-4 -vinylbenzophenone)] was less efficient in PS than 2-hydroxy-4-methoxybenzophenone [334]. Similarly, PE films doped with 4-dodecyloxy-2-hydroxybenzophenone (0.1 mol%) were more stable than PE doped with copolymers of ethylene with polymerisable benzophenones having a comparable content of chromophores [54]. The efficiency of a SAN type LS, a terpolymer of 2-hydroxy-4-(4-vinylbenzyloxy)benzophenone with acrylonitrile and styrene did not exceed that of conventional LS [84]. No efficiency loss of 2-hydroxy-4-methacryloyloxybenzophenone in ABS was observed after bonding into a terpolymer with styrene and acrylonitrile. The homopolymer was slightly inferior to both the monomer and terpolymer [84]. A better protection of PP was provided by poly[(2-hydroxy-3-allyl-4-methoxyphenylbenzophenone)-co-dibutyl maleate] than with 2-hydroxy-3-allyl-4-methoxybenzophenone [335] (stabilization tests were performed in the presence of phenolic antioxidants). A comparable or better light stabilizing efficiency of poly[vinyl acetate-co-(5-methylacryloyloxy salicylate)] or poly(2-allylphenyl salicylate-co-dioctyl maleate) than that of alkyl-phenyl salicylates was observed in polyolefins [335]. [Pg.154]

A significant number of works are concerned with the development of new membranes for the separation of mixtures of aromatic/alicyclic hydrocarbons [10,11,77-109]. For example, the following works can be mentioned. A mixture of cellulose ester and polyphosphonate ester (50 wt%) was used for benzene/cyclohexane separation [113]. High values of the separation factor and flux were achieved (up to 2 kg/m h). In order to achieve better fluxes and separation factors the attention was shifted to the modification of polymers by grafting technique. Grafted membranes were made of polyvinylidene fluoride with 4-vinyl pyridine or acrylic acid by irradiation [83]. 2-Hydroxy-3-(diethyl-amino) propyl methacrylate-styrene copolymer membranes with cyanuric chloride were prepared, which exhibited a superior separation factor /3p= 190 for a feed aromatic component concentration of 20 wt%. Graft copolymer membranes based on 2-hydroxyethyl methylacrylate-methylacrylate with thickness 10 pm were prepared [85]. The membranes yielded a flux of 0.7 kg/m h (for feed with 50 wt% of benzene) and excellent selectivity. Benzene concentration in permeate was about 100 wt%. A membrane based on polyvinyl alcohol and polyallyl amine was prepared [87]. For a feed containing 10 wt% of benzene the blend membrane yielded a flux of 1-3 kg/m h and a separation factor of 62. [Pg.257]

Block copolymers with hydroxyl segments were prepared by various ways An example utilizes the copper-catalyzed sequential copolymerizations of nBA and 2-[(trimethylsilyl)oxy]ethyl acrylate by the macroinitiator method into B-31 to B-33. The copolymers were then hydrolyzed into amphiphilic forms by deprotection of the silyl groups.313 A direct chain-extension reaction of polystyrene and PMMA with HEMA also afforded similar block copolymers with hydroxyl segments (B-34 and B-35).241-243 In block polymer B-36, a hydroxy-functionalized acrylamide provides a hydrophilic segment.117 Block copolymers of styrene and p-acetoxystyrene (B-37 to B-39), prepared by iron... [Pg.491]

Other o-nitrophenol-containing resins have been prepared with the aim of increasing the distance between the reactive center and the macromolecular backbone, which should accelerate the active ester formation by achieving an easier approach of the reagents. Thus, the Friedel-Crafts alkylation of styrene-divinyl-benzene copolymer with 4-hydroxy-3-nitrobenzyl chloride promoted by aluminium trichloride gave 4-hydroxy-3-nitrobenzylated polystyrene (70) (approximately 30% of the aromatic rings of the polymer were substituted according to elemental... [Pg.159]

A very prominent example of this type of resist is a copolymer of 4-hydroxy-styrene with tert-butyl ester-protected 4-hydroxystyrene (TBEST) (XXIX) (see scheme 7.33), developed at IBM and sold under the brand name of APEX-E by the Shipley Company. The synthetic route to copolymer (XXIX) can be through direct copolymerization of 4-hydroxystyrene with TBEST or via polymerization of TBEST, followed by partial deprotection to afford a copolymer with repeating units having about 20-30% protecting groups. Partial protection of copolymer... [Pg.357]

Like impact polystyrene, acrylonitrile-butadiene-styrene copolymers (ABS) are sensitive to oxidation caused by the unsaturation of the elastomeric component. The processes for the manufacture of ABS require the drying (at 100°C-150°C) of powdery polymers that are extremely sensitive to oxidation. Thus, antioxidants have to be added before the coagulation step, normally in emulsified form, although sometimes in solution. The primary antioxidants are frequently sued together with a synergist. Primary anti-oxidants commonly used for ABS are BHT, 2,2 -methylenebis-(4-ethyl or methyl-6-tert-hutyl-phenol), 2,2 -methylenebis-(4-methyl-6-cyclohexyl-phenol), 2,2 -methylenehis-(4-methyl-6-nonyl-phenol), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate, and l,l,3-tris-(5-tert-hutyl-4-hydroxy-2-methylphenyl)-butane. Important synergists are tris-(nonyl-phenyl)-phosphite and dilauryl thiodipropionate. These antioxidants are either liquids or show comparatively low melting points, which is an important prerequisite for the formation of stable emulsions. [Pg.109]

Various workers have discussed aspects other than those mentioned above in studies of the viscoelastic properties of polymers. These include PVOH [62], hydroxy-terminated polybutadiene [63], styrene-butadiene and neoprene-type blends [64], and polyamidoimides [65]. Other aspects of viscoelasticity that have been studied include relaxation phenomena in PP [66] and methylmethacrylate-N-methyl glutarimide copolymers [67], shear flow of high-density polyethylene [68], Tg of PMMA and its copolymers with N-substituted maleimide [69] and ethylene-vinyl acetate copolymers [70], and creep behaviour of poly(p-phenylene terephthalate) [71] and PE [72]. [Pg.478]

In addition to isobutene-styrene, di- and triblock copolymers can be synthesized by isobutene/a-methylstyrene. Further, block copolymers of isobutene can be made by polyaddition reactions with hydroxy- and dihydroxytelechelics of poly(isobutene). [Pg.66]

Dispersions of copolymers of butadiene with acrylic acid or methacrylic acid in aqueous potassium hydroxide have been mentioned in the patent literature" as a dip for adhering rayon tire cord to rubber. The effect is most evident when carboxyl groups are present in the adhesive, the tie cement, and the cover stocks. The adhesive may be applied as latex, aqueous dispersion, or cement. A patent issued to the Dunlop Company Ltd." describes the use of a styrene-butadiene-itaconic acid copolymer with Gen-Tac Latex (GenCorp) in formulating an RFL (resorcinol formaldehyde latex) type adhesive for bonding a natural rubber compound to Nylon 66 and rayon tire cords. Brodnyan" also claims carboxylic adhesives for rayon, nylon, and Dacron cords. In this case, the tire cords were treated with a mixed polymer latex containing resorcinol-formaldehyde condensate, a butadiene-vinyl pyridine copolymer, an SBR copolymer, and a multifunctional copolymer from methyl acrylate, 2-hydroxy propyl methacrylate, and acrylic acid. A different approach was reported by Badenkov" whereby rayon or nylon tire cords were coated with... [Pg.274]


See other pages where Styrene copolymer with 2- 2-hydroxy is mentioned: [Pg.144]    [Pg.739]    [Pg.34]    [Pg.404]    [Pg.781]    [Pg.536]    [Pg.91]    [Pg.155]    [Pg.53]    [Pg.117]    [Pg.86]    [Pg.217]    [Pg.781]    [Pg.224]    [Pg.152]    [Pg.390]    [Pg.568]    [Pg.243]    [Pg.464]    [Pg.218]    [Pg.216]    [Pg.613]    [Pg.6675]    [Pg.95]    [Pg.302]    [Pg.373]    [Pg.568]    [Pg.875]    [Pg.398]    [Pg.298]   


SEARCH



Styrene, copolymers with

Styrene-copolymers

© 2024 chempedia.info