Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam propylene

Area 500 accepts or generates, then stores, all of the utilities within the facility. These include caustic, oxygen, demineralized and deionized water, hot water, primary cooling water, recycle water, potable water, secondary cooling water, steam, propylene glycol, hydrogen, instrument air, natural gas, nitrogen, and carbon dioxide. [Pg.94]

At low steam/propylene ratios, acrolein is formed with 20-25% selectivity at propylene conversions of about 20% [13]. It is believed that the presence of steam suppresses deep oxidation of propylene and therefore allows higher... [Pg.226]

Properly speaking, steam cracking is not a refining process. A key petrochemical process, it has the purpose of producing ethylene, propylene, butadiene, butenes and aromatics (BTX) mainly from light fractions of crude oil (LPG, naphthas), but also from heavy fractions hydrotreated or not (paraffinic vacuum distillates, residue from hydrocracking HOC). [Pg.382]

In a single stage, without liquid recycle, the conversion can be optimized between 60 and 90%. The very paraffinic residue is used to make lubricant oil bases of high viscosity index in the range of 150 N to 350 N the residue can also be used as feedstock to steam cracking plants providing ethylene and propylene yields equal to those from paraffinic naphthas, or as additional feedstock to catalytic cracking units. [Pg.391]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Single-reaction-step processes have been studied. However, higher selectivity is possible by optimizing catalyst composition and reaction conditions for each of these two steps (40,41). This more efficient utilization of raw material has led to two separate oxidation stages in all commercial faciUties. A two-step continuous process without isolation of the intermediate acrolein was first described by the Toyo Soda Company (42). A mixture of propylene, air, and steam is converted to acrolein in the first reactor. The effluent from the first reactor is then passed directiy to the second reactor where the acrolein is oxidized to acryUc acid. The products are absorbed in water to give about 30—60% aqueous acryUc acid in about 80—85% yield based on propylene. [Pg.152]

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

It is possible to dispense with the extraction step if the oxidation section is operated at high propylene concentrations and low steam levels to give a concentrated absorber effluent. In this case, the solvent recovery column operates at total organic reflux to effect a2eotropic dehydration of the concentrated aqueous acryflc acid. This results in a reduction of aqueous waste at the cost of somewhat higher energy usage. [Pg.154]

There are currentiy two principal processes used for the manufacture of monomeric acryhc esters the semicatalytic Reppe process and the propylene oxidation process. The newer propylene oxidation process is preferred because of economy and safety. In this process acroleia [107-02-8] is first formed by the catalytic oxidation of propylene vapor at high temperature ia the preseace of steam. The acroleia is thea oxidi2ed to acryhc acid [79-10-7]. [Pg.164]

A two-step process involving conventional nonoxidative dehydrogenation of propane to propylene in the presence of steam, followed by the catalytic ammoxidation to acrylonitrile of the propylene in the effluent stream without separation, is also disclosed (65). [Pg.184]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

ElexibiHty allows the operator to pick and choose the most attractive feedstock available at a given point in time. The steam-cracking process produces not only ethylene, but other products as weU, such as propylene, butadiene, butylenes (a mixture of monounsaturated C-4 hydrocarbons), aromatics, etc. With ethane feedstock, only minimal quantities of other products ate produced. As the feedstocks become heavier (ie, as measured by higher molecular weights and boiling points), increasing quantities of other products are produced. The values of these other coproduced products affect the economic attractiveness and hence the choice of feedstock. [Pg.171]

Thermal Cracking. / -Butane is used in steam crackers as a part of the mainly ethane—propane feedstream. Roughly 0.333—0.4 kg ethylene is produced per kilogram / -butane. Primary bv-pioducts include propylene (50 57 kg/100 kg ethylene), butadiene (7-8.5 kg/100 kg), butylenes (5-20 kg/WO kg) and aromatics (6 kg/ToO kg). [Pg.402]

Propjiene [115-07-17, CH2CH=CH2, is perhaps the oldest petrochemical feedstock and is one of the principal light olefins (1) (see Feedstocks). It is used widely as an alkylation (qv) or polymer—ga soline feedstock for octane improvement (see Gasoline and other motor fuels). In addition, large quantities of propylene are used ia plastics as polypropylene, and ia chemicals, eg, acrylonitrile (qv), propylene oxide (qv), 2-propanol, and cumene (qv) (see Olefin POLYMERS,polypropylene Propyl ALCOHOLS). Propylene is produced primarily as a by-product of petroleum (qv) refining and of ethylene (qv) production by steam pyrolysis. [Pg.122]

Production estimates for propylene can only be approximated. Refinery propylene may be diverted captively to fuel or gasoline uses whenever recovery is uneconomic. Steam-cracker propylene production varies with feedstock and operating conditions. Moreover, because propylene is a by-product, production rates depend on gasoline and ethylene demand. [Pg.127]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

Propylene has many commercial and potential uses. The actual utilisation of a particular propylene supply depends not only on the relative economics of the petrochemicals and the value of propylene in various uses, but also on the location of the supply and the form in which the propylene is available. Eor example, economics dictate that recovery of high purity propylene for polymerisation from a smaH-volume, dilute off-gas stream is not feasible, whereas polymer-grade propylene is routinely recovered from large refineries and olefins steam crackers. A synthetic fuels project located in the western United States might use propylene as fuel rather than recover it for petrochemical use a plant on the Gulf Coast would recover it (see Euels, synthetic). [Pg.128]

Other. Ethylene can be produced by steam cocracking of propylene with ethane and propane. Ethylene and butenes can also be produced by catalytic disproportionation of propylene (108). [Pg.130]

Significant products from a typical steam cracker are ethylene, propylene, butadiene, and pyrolysis gasoline. Typical wt % yields for butylenes from a steam cracker for different feedstocks are ethane, 0.3 propane, 1.2 50% ethane/50% propane mixture, 0.8 butane, 2.8 hill-range naphtha, 7.3 light gas oil, 4.3. A typical steam cracking plant cracks a mixture of feedstocks that results in butylenes yields of about 1% to 4%. These yields can be increased by almost 50% if cracking severity is lowered to maximize propylene production instead of ethylene. [Pg.366]

The Coastal process uses steam pyrolysis of isobutane to produce propylene and isobutylene (as weH as other cracked products). It has been suggested that the reaction be carried out at high pressure, >1480 kPa ( 15 atm), to facHitate product separation. This process was commercialized in the late 1960s at Coastal s Corpus Christi refinery. [Pg.368]

The various sources of isobutylene are C streams from fluid catalytic crackers, olefin steam crackers, isobutane dehydrogenation units, and isobutylene produced by Arco as a coproduct with propylene oxide. Isobutylene concentrations (weight basis) are 12 to 15% from fluid catalytic crackers, 45% from olefin steam crackers, 45 to 55% from isobutane dehydrogenation, and high purity isobutylene coproduced with propylene oxide. The etherification unit should be designed for the specific feedstock that will be processed. [Pg.373]

The mbber is then separated from its solvent by steam stripping. The viscous cement is pumped into a violently agitated vessel partly full of boiling water. The hexane flashes off and, together with water vapor, passes overhead to a condenser and to a decanter for recovery and reuse after drying. Residual unpolymerized ethylene and propylene appear at the hexane condenser as noncondensibles, and are recovered for reuse after drying. The polymer, freed from its carrier solvent, falls into the water in the form of cmmb. [Pg.504]

Table 6 shows the effect of varying coil oudet pressure and steam-to-oil ratio for a typical naphtha feed on the product distribution. Although in these tables, the severity is defined as maximum, in a reaUstic sense they are not maximum. It is theoretically possible that one can further increase the severity and thus increase the ethylene yield. Based on experience, however, increasing the severity above these practical values produces significantly more fuel oil and methane with a severe reduction in propylene yield. The mn length of the heater is also significantly reduced. Therefore, this is an arbitrary maximum, and if economic conditions justify, one can operate the commercial coils above the so-called maximum severity. However, after a certain severity level, the ethylene yield drops further, and it is not advisable to operate near or beyond this point because of extremely severe coking. [Pg.437]

Fig. 51eft. Schematic flow diagram of an ethylene plant using naphtha feedstock. CW = cooling water QW = quench water QO = quench oil LPS = low pressure steam MPS = medium pressure steam SPS = super high pressure steam C3R = propylene refrigerant and... Fig. 51eft. Schematic flow diagram of an ethylene plant using naphtha feedstock. CW = cooling water QW = quench water QO = quench oil LPS = low pressure steam MPS = medium pressure steam SPS = super high pressure steam C3R = propylene refrigerant and...
Acrylonitrile. Acrylonitrile is produced by reacting propylene, ammonia, and owgeu (air) in a single flmdized bed of a complex catalyst. Known as the SOHIO process, this process was first operated commercially in 1960. In addition to acrylonitrile, significant quantities of HCN and acetonitrile are also produced. This process is also exothermic. Temperature control is achieved by raising steam inside vertical tubes immersed in the bed [Veatch, Hydrocarbon Proce.ss. Pet. Refiner, 41, 18 (November 1962)]. [Pg.1573]

Ethylene Propylene (EP, EPDM) is an o-ring rubber compound that is compatible with most water-based chemicals. It is good with caustic soda, detergents, water treatment chemicals, steam, and wastewater and with food processes like milk, beer, and soups. EP rubber compound is petroleum based and for this reason it should never come into contact with petroleum based chemicals. [Pg.206]

EPDM (Ethylene Propylene Diene Monomer Rubbers) 320 Steam, High-temperature Aqueous Solutions, Inorganic Acids and Organic Acids or bases... [Pg.43]

One approach is to uses solvent extraction with dimethyl formamide (DMF) to remove Cj acetylene and a C, acetylene-propadiene mixture from their steam cracked ethylene and propylene streams. The simple acetylene is sold as welding gas, and the C, stream is sold as starting material for chemical synthesis. [Pg.110]


See other pages where Steam propylene is mentioned: [Pg.227]    [Pg.227]    [Pg.232]    [Pg.153]    [Pg.26]    [Pg.415]    [Pg.125]    [Pg.127]    [Pg.127]    [Pg.136]    [Pg.137]    [Pg.177]    [Pg.370]    [Pg.432]    [Pg.461]    [Pg.1560]    [Pg.54]    [Pg.99]    [Pg.221]    [Pg.238]    [Pg.10]    [Pg.89]    [Pg.236]    [Pg.86]   
See also in sourсe #XX -- [ Pg.465 ]




SEARCH



Cyclic propylene steaming

Cyclic propylene steaming method

Propylene by steam cracking

Propylene steaming of fluid catalytic

Propylene steaming of fluid catalytic cracking catalysts

© 2024 chempedia.info