Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubilized systems surfactant micelles

When nonionic surfactant is applied to a soil-aqueous system, the surfactant can exist as dissolved monomers, sorbed molecules on the soil, or aggregated groups of molecules called micelles. Molecules of HOCs in such a system can be solubilized in surfactant micelles, dissolved in the surrounding solution, sorbed directly on the soil, or sorbed in association with sorbed surfactant. The presence of nonionic surfactant micelles in the bulk solution of the system results in the partitioning of the HOC between two bulk solution compartments, commonly referred to as pseudophases. The micellar pseudophase consists of the hydrophobic interiors of surfactant micelles, whereas the aqueous pseudophase consists mainly of dissolved surfactant monomers and water. Micelles form when the bulk solution concentration exceeds the surfactant CMC. [Pg.340]

The effect of humic materials on the photolytic micellar system was evaluated in DR s photodegradation. DR solubilized within Tween 80 micellar solution with or without humic materials was determined. In order to calculate the quantum yield, the molar absorptivity of DR was determined by spectrophotometry. The determination of the quantum yield and reaction rates was examined through a pseudo first-order decay rate expression. Quenching and catalytic effects resulting from the humic substances were examined through Stem-Volmer analysis. A reaction mechanism of photolytic decay of DR solubilized within surfactant micelles in the presence of various amount of humic materials was proposed for this purpose. The effect of high and low concentration of humic materials has been accounted for by a designed model. [Pg.49]

Organic Materials. Qrganic materials that have low water solubihty can be solubilized in micelles to produce systems with substantial organic content where no solubility would occur in the absence of micelles. More details on the phenomenon of solubilization in surfactant micelles will be presented below. In any case it is usually found that immiscible hydrophobic materials will have relatively little effect on cmc, although evidence for shght decreases has been reported. [Pg.386]

The quantity of a substance that can be solubilized in surfactant micelles will depend on many factors, some of which have already been discussed. From the standpoint of the additive itself, such factors as molecular size and shape, polarity, branching, and the electronegativity of constituent atoms have all been found to be of some significance, depending on the exact system. One extensively explored factor relating the chemical structure of the additive to its solubilization is the relationship between the molar volume of the additive and the maximum amount of material that can be incorporated in a given surfactant solution. In general, one finds an inverse relationship between the molecular volume of the additive and the amount of material solubilized. [Pg.402]

In a multiphase formulation, such as an oil-in-water emulsion, preservative molecules will distribute themselves in an unstable equilibrium between the bulk aqueous phase and (i) the oil phase by partition, (ii) the surfactant micelles by solubilization, (iii) polymeric suspending agents and other solutes by competitive displacement of water of solvation, (iv) particulate and container surfaces by adsorption and, (v) any microorganisms present. Generally, the overall preservative efficiency can be related to the small proportion of preservative molecules remaining unbound in the bulk aqueous phase, although as this becomes depleted some slow re-equilibration between the components can be anticipated. The loss of neutral molecules into oil and micellar phases may be favoured over ionized species, although considerable variation in distribution is found between different systems. [Pg.367]

Microemulsions are thermodynamically stable mixtures. The interfacial tension is almost zero. The size of drops is very small, and this makes the microemulsions look clear. It has been suggested that microemulsion may consists of bicontinuous structures, which sounds more plausible in these four-component microemulsion systems. It has also been suggested that microemulsion may be compared to swollen micelles (i.e., if one solubilizes oil in micelles). In such isotropic mixtures, short-range order exists between droplets. As found from extensive experiments, not all mixtures of water-oil-surfactant-cosurfactant produce a microemulsion. This has led to studies that have attempted to predict the molecular relationship. [Pg.183]

Florence (1983) provide a comprehensive reference for the use of surfactants in drug formulation development. The treatment by Florence (1981) of drug solubilization in surfactant systems is more focused on the question at hand and provides a clear description of surfactant behavior and solubilization in conventional hydrocarbon-based surfactants, especially nonionic surfactants. This chapter will discuss the conventional surfactant micelles in general as well as update the reader on recent practical/commercial solubilization applications utilizing surfactants. Other uses of surfactants as wetting agents, emulsiLers, and surface modiLers, and for other pharmaceutical applications are nc emphasized. Readers can refer to other chapters in this book for details on these uses of surfactant Polymeric surfactant micelles will be discussed in Chapter 13, Micellization and Drug Solubility Enhancement Part II Polymeric Micelles. [Pg.257]

Enhanced HOC solubility in surfactant systems generally has been quantified by a distribution coefficient that only considers HOC partitioning to surfactant micelles that exist above the critical micelle concentration (CMC). Although surfactants can form a mobile micellar pseudophase that leads to the facilitated transport of solubilized HOCs, they also can be adsorbed by the solid matrix and thereby lead to HOC partitioning to immobile sorbed surfactants and, thus, enhanced HOC retardation. Therefore, the effectiveness of a remediation scheme utilizing surfactants depends on the distribution of an HOC between immobile compartments (e.g., subsurface solids, sorbed surfactants) and mobile compartments (e.g., water, micelles). [Pg.188]

The very complex variation of the amount solubilized, as well as physico-chemical properties, with chemical structure of solubilizate and surfactant as well as with surfactant concentration cannot be adequately discussed solely in terms of the energetical conditions of the solubilizate in the micelles. Thus one should also consider the conditions in the phase which separates out at the solubilization limit this is in most cases a liquid crystalline phase. A fundamental basis for a proper understanding of solubilization in surfactant systems is, therefore, a detailed information on phase equilibria in three-component systems surfactant-solubilizate-water. Due in particular... [Pg.25]

If the radicals R and/or R are hydrophobic, the ester will be solubilized by the micelles and the hydrolysis will occur at the surface of the micelle. When the micelles are formed by a cationic surfactant, the local concentration of OH- ions close to the micellar surface will be substantially larger than the bulk concentration. Thus, by using a micellar system, one has been able to assemble the reactants in some spatial region which makes the reaction a more probable event. In enzymatic catalysis this mechanism has been termed the proximity effect283. ... [Pg.64]

Micellar electrokinetic capillary chromatography (MECC) is a mode of CE similar to CZE, in which surfactants (micelles) are added to the buffer system. Micellar solutions can be used to solubilize hydrophobic compounds that would otherwise be insoluble in water. In MECC the micelles are used to provide a reversed-phase character to the separation mechanism. Although MECC was originally developed for the separation of neutral species by capillary electrophoresis, it has also been shown to enhance resolution in the analysis of a variety of charged species.16... [Pg.161]

At the SMC The change in membrane polarity as well as removal of the aqueous layer limiting step are effects which, undoubtedly, must also be produced by the surfactant molecules. These effects are apparently masked by micelle solubilization governed by micelle-aqueous phase partitioning (P ). According to the Col-lander equation [31], two partition coefficients found in two related systems can be expressed as follows ... [Pg.95]

The maximum additive concentration (MAC) is defined as the maximum amount of solubilisate, at a given concentration of surfactant, that produces a clear solution. Different amounts of solubilisates, in ascending order, are added to a series of vials containing the known concentration of surfactant and mixed until equilibrium is reached. The maximum concentration of solubilisate that forms a clear solution is then determined visually. This same procedure can be repeated for the different concentrations of surfactant in a known amount of solubilisate in order to determine the optimum concentration of surfactant (Figure 4.24). Based on this information, one can construct a ternary phase diagram that describes the effects of three constituents (i.e., solubilisate, surfactant, and water) on the micelle system. Note that unwanted phase transitions can be avoided by ignoring the formulation compositions near the boundary. In general, the MAC increases with an increase in temperature. This may be due to the combination of the increase of solubilisate solubility in the aqueous phase and the micellar phase rather than an increased solubilization by the micelles alone. [Pg.240]

Based upon the use of nonionic surfactant systems and their cloud point phase separation behavior, several simple, practical, and efficient extraction methods have been proposed for the separation, concentration, and/or purification of a variety of substances including metal ions, proteins, and organic substances (429-441. 443.444). The use of nonionic micelles in this regard was first described and pioneered by Watanabe and co-workers who applied the approach to the separation and enrichment of metal ions (as metal chelates) (429-435). That is, metal ions in solution were converted to sparingly water soluble metal chelates which were then solubilized by addition of nonionic surfactant micelles subsequent to separation by the cloud point technique. Table XVII summarizes data available in the literature demonstrating the potential of the method for the separation of metal ions. As can be seen, factors of up to forty have been reported for the concentration effect of the separated metals. [Pg.50]

It seems likely that the cationic CPC micelles, which have a large positive charge at or near the micellar surface, interact attractively with the n-molecular orbital system of benzene, and that this interaction contributes to the fact that the solubilization constant for benzene in CPC is approximately twice as large as that in SDS micelles. A preferential interaction between cationic surfactants and aromatic solutes has been reported by several groups of investigators (25-27), and recent work in our laboratory shows that 1-hexadecyltrimethylammonium bromide micelles also solubilize benzene more effectively than do the anionic alkylsulfate surfactant micelles (28). Thus, the tendency of benzene molecules to solubilize near the surface of the cationic micelles, at low XB values, may lead to a partial saturation of surface "sites" by benzene, diminishing the ability of additional benzene molecules to bind near the surface. Such an effect could be responsible for the initial increase in activity coefficient that occurs, particularly in the CPC solutions, as Xg increases. [Pg.189]

The phase boundary lines for supercritical ethane at 250 and 350 bar are shown in Figure 2. The surfactant was found to be only slightly soluble in ethane below 200 bar at 37 C, so that the ternary phase behavior was studied at higher pressures where the AOT/ethane binary system is a single phase. As pressure is increased, more water is solubilized in the micelle core and larger micelles can exist in the supercritical fluid continuous phase. The maximum amount of water solubilized in the supercritical ethane-reverse micelle phase is relatively low, reaching a W value of 4 at 350 bar. [Pg.99]

The combined effect of pH and surfactants on the dissolution of piroxicam has been reported. " In this system, the dissolution rate and solubility of the drug substance could be well estimated by a simple additive model for the effect of pH and surfactant, where the total dissolved concentration equaled the summation of the amoimt of dissolved non-ionized substance, the amount of dissolved ionized substance, and the amoimt of substance solubilized in the surfactant micelles. It was suggested that the model developed in this work could be useful in establishing an in vitro-in vivo correlation for piroxicam. [Pg.391]

The general solubilization curve for surfactants is given in Fig. 14. If the monomers of surfactant in solution do not affect the solubility of the solute, then the solute concentration will remain constant (at the intrinsic solubility, S ) until the CMC. After the CMC the solute concentration will increase linearly with increasing surfactant (micelle) concentration. A simple mathematical representation for a solute s total solubility, x, in a surfactant system is... [Pg.3324]

A preferred location of the solubilizate molecule within the micelle is largely dictated by chemical structure. However, solubilized systems are dynamic and the location of molecules within the micelle changes rapidly with time. Solubilization in surfactant aqueous systems above the critical micelle concentration offers one pathway for the formulation of poorly soluble drugs. From a quantitative point of view, the solubilization process above the CMC may be considered to involve a simple partition phenomenon between an aqueous and a micellar phase. Thus the relationship between surfactant concentration Cm and drug solubility Ctot is given by Eq. (3). [Pg.3588]


See other pages where Solubilized systems surfactant micelles is mentioned: [Pg.30]    [Pg.262]    [Pg.62]    [Pg.101]    [Pg.199]    [Pg.2594]    [Pg.221]    [Pg.17]    [Pg.182]    [Pg.193]    [Pg.245]    [Pg.293]    [Pg.168]    [Pg.211]    [Pg.223]    [Pg.469]    [Pg.48]    [Pg.38]    [Pg.65]    [Pg.302]    [Pg.303]    [Pg.38]    [Pg.19]    [Pg.162]    [Pg.165]    [Pg.178]    [Pg.363]   
See also in sourсe #XX -- [ Pg.124 , Pg.128 ]




SEARCH



Micelle system

Micelles solubilization

Micellization surfactants

Solubilization surfactant systems

Solubilization surfactants

Solubilized system

Solubilizers surfactants

Surfactant systems

© 2024 chempedia.info