Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonionic micelles

Key words Dynamic light scattering -self-diffusion - micelle - nonionic surfactant - lyotropic liquid crystal... [Pg.68]

In Scheme 6.2, TH and are the micellized nonionized and ionized ternary complex, respectively, TH is nonreactive and is the first-order rate constant for product formation from reactive It may be noted that Scheme 6.2 ignores the effects of pH on association constants Km and as described in Scheme 6.1. The rate law rate = k M [(HnLnS)M] and Scheme 6.2 can lead to Equation 6.14... [Pg.349]

Other properties of association colloids that have been studied include calorimetric measurements of the heat of micelle formation (about 6 kcal/mol for a nonionic species, see Ref. 188) and the effect of high pressure (which decreases the aggregation number [189], but may raise the CMC [190]). Fast relaxation methods (rapid flow mixing, pressure-jump, temperature-jump) tend to reveal two relaxation times t and f2, the interpretation of which has been subject to much disagreement—see Ref. 191. A fast process of fi - 1 msec may represent the rate of addition to or dissociation from a micelle of individual monomer units, and a slow process of ti < 100 msec may represent the rate of total dissociation of a micelle (192 see also Refs. 193-195). [Pg.483]

After reviewing various earlier explanations for an adsorption maximum, Trogus, Schechter, and Wade [244] proposed perhaps the most satisfactory one so far (see also Ref. 243). Qualitatively, an adsorption maximum can occur if the surfactant consists of at least two species (which can be closely related) what is necessary is that species 2 (say) preferentially forms micelles (has a lower CMC) relative to species 1 and also adsorbs more strongly. The adsorbed state may also consist of aggregates or hemi-micelles, and even for a pure component the situation can be complex (see Section XI-6 for recent AFM evidence of surface micelle formation and [246] for polymeric surface micelles). Similar adsorption maxima found in adsorption of nonionic surfactants can be attributed to polydispersity in the surfactant chain lengths [247], Surface-active impuri-... [Pg.487]

The Kraft point (T ) is the temperature at which the erne of a surfactant equals the solubility. This is an important point in a temperature-solubility phase diagram. Below the surfactant cannot fonn micelles. Above the solubility increases with increasing temperature due to micelle fonnation. has been shown to follow linear empirical relationships for ionic and nonionic surfactants. One found [25] to apply for various ionic surfactants is ... [Pg.2584]

Studies of micellar catalysis of himolecular reactions of uncharged substrates have not been frequent" ". Dougherty and Berg performed a detailed analysis of the kinetics of the reaction of 1-fluoro-2,4-dinitrobenzene with aniline in the presence of anionic and nonionic surfactants. Micelles induce increases in the apparent rate constant of this reaction. In contrast, the second-order rate constant for reaction in the micellar pseudophase was observed to be roughly equal to, or even lower than the rate constant in water. [Pg.131]

In this section the influence of micelles of cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) and dodecyl heptaoxyethylene ether (C12E7) on the Diels-Alder reaction of 5.1a-g with 5.2 in the absence of Lewis-add catalysts is described (see Scheme 5.1). Note that the dienophiles can be divided into nonionic (5.1a-e), anionic (5.If) and cationic (5.1g) species. A comparison of the effect of nonionic (C12E7), anionic (SDS) and cationic (CTAB) micelles on the rates of their reaction with 5.2 will assess of the importance of electrostatic interactions in micellar catalysis or inhibition. [Pg.133]

The effect of micelles of SDS, CTAB and C12E7 on the apparent second-order rate constants of the Diels-Alder reaction between nonionic 5.1a, anionic 5.1 f and cationic 5.1g with 5.2 is reported in Table 5.1. These apparent rate constants are calculated from the observed pseudo-first-order rate constants by dividing the latter by the overall concentration of 5.2. [Pg.133]

Figure 5.7k shows the shifts of the proton signals of C12E7 as induced by 5.1c. All parts of the surfactant experience an appreciable shift. The strongest shifts are observed near the interface between the alkyl chains and the ethyleneoxide part, suggesting that 5.1c prefers the interfacial region of the nonionic micelles. [Pg.146]

Ahphatic amine oxides behave as typical surfactants in aqueous solutions. Below the critical micelle concentration (CMC), dimethyl dodecyl amine oxide exists as single molecules. Above this concentration micellar (spherical) aggregates predorninate in solution. Ahphatic amine oxides are similar to other typical nonionic surfactants in that their CMC decreases with increasing temperature. [Pg.189]

Small micelles in dilute solution close to the CMC are generally beheved to be spherical. Under other conditions, micellar materials can assume stmctures such as oblate and prolate spheroids, vesicles (double layers), rods, and lamellae (36,37). AH of these stmctures have been demonstrated under certain conditions, and a single surfactant can assume a number of stmctures, depending on surfactant, salt concentration, and temperature. In mixed surfactant solutions, micelles of each species may coexist, but usually mixed micelles are formed. Anionic-nonionic mixtures are of technical importance and their properties have been studied (38,39). [Pg.237]

Finally, some general rules for the amount of surfactant appear to be vaHd (13). For anionic surfactants the average size of droplets is reduced for an increase of surfactant concentration up to the critical micellization concentration, whereas for nonionic surfactants a reduction occurs also for concentrations in excess of this value. The latter case may reflect the solubiHty of the nonionic surfactant in both phases, causing a reduction of interfacial tension at higher concentrations, or may reflect the stabilizing action of the micelles per se. [Pg.197]

When apphed to a nonionic surfactant in pure water at concentrations below the critical micelle concentration, Eq. (22-42) simplifies into Eq. (22-43)... [Pg.2018]

W. Brown, R. Johnsen, P. Stilbs, B. Lindman. Size and shape of nonionic amphiphile (Ci2Eg) micelles in dilute aqueous solutions as derived from quasielastic and intensity of light scattering, sedimentation and pulsed-field-gradient nuclear magnetic resonance self-diffusion data. J Phys Chem 87 4548-4553, 1983. [Pg.550]

For the separation of amino acids, the applicability of this principle has been explored. For the separation of racemic phenylalanine, an amphiphilic amino acid derivative, 1-5-cholesteryl glutamate (14) has been used as a chiral co-surfactant in micelles of the nonionic surfactant Serdox NNP 10. Copper(II) ions are added for the formation of ternary complexes between phenylalanine and the amino acid cosurfactant. The basis for the separation is the difference in stability between the ternary complexes formed with d- or 1-phenylalanine, respectively. The basic principle of this process is shown in Fig. 5-17 [72]. [Pg.145]

It has been found that the CMC values are higher and the micelle aggregation numbers smaller than those of the corresponding nonionic surfactants. The CMC increases with increasing EO chain, which is, according to the authors, opposite to the results for sodium alkyl ether sulfate. [Pg.325]

From the apparent ionization degree it was concluded that the EO chain probably behaves as part of the headgroup. As with Aalbers [49], a low surface charge of the sodium alkyl ether carboxylate micelles was mentioned. The micelle aggregation number N increases with the C chain much more than for the corresponding nonionic surfactants. In the case of C8 there was no influence of temperature. A small decrease was found with increasing EO, but much smaller than in the case of nonionics. [Pg.326]

Surfactants greatly improve the performance of trans-cinnamaldehyde as a corrosion inhibitor for steel in HCl [741,1590,1591]. They act by enhancing the adsorption at the surface. Increased solubility or dispersibility of the inhibitor is an incidental effect. N-dodecylpyridinium bromide is effective in this aspect far below its critical micelle concentration, probably as a result of electrostatic adsorption of the monomeric form of N-dodecylpyridinium bromide. This leads to the formation of a hydrophobic monolayer, which attracts the inhibitor. On the other hand, an ethoxylated nonylphenol, a nonionic surfactant, acts by incorporating the inhibitor into micelles, which themselves adsorb on the steel surface and facilitate the adsorption of trans-cinnamaldehyde. [Pg.87]

In addition, water motion has been investigated in reverse micelles formed with the nonionic surfactants Triton X-100 and Brij-30 by Pant and Levinger [41]. As in the AOT reverse micelles, the water motion is substantially reduced in the nonionic reverse micelles as compared to bulk water dynamics with three solvation components observed. These three relaxation times are attributed to bulklike water, bound water, and strongly bound water motion. Interestingly, the overall solvation dynamics of water inside Triton X-100 reverse micelles is slower than the dynamics inside the Brij-30 or AOT reverse micelles, while the water motion inside the Brij-30 reverse micelles is relatively faster than AOT reverse micelles. This work also investigated the solvation dynamics of liquid tri(ethylene glycol) monoethyl ether (TGE) with different concentrations of water. Three relaxation time scales were also observed with subpicosecond, picosecond, and subnanosecond time constants. These time components were attributed to the damped solvent motion, seg-... [Pg.413]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

The absorption of drugs from the rectal [32] cavity has been studied in some detail. Muranishi et al. [34] have shown that a significant increase in the absorption and lymphatic uptake of soluble and colloidal macromolecules can be achieved by pretreating the rectal mucosal membrane with lipid-nonionic surfactant mixed micelles. They found no evidence of serious damage of the mucosal membrane. Davis [30] suggested that the vaginal cavity could be an effective delivery site for certain pharmaceuticals, such as calcitonin, used for the treatment of postmenopausal osteoporosis. [Pg.538]

The micellization and adsorption properties of industrial sulfonate/ ethoxylated nonionic mixtures have been assessed in solution in contact with kaolinite. The related competitive equilibria were computed with a simple model based on the regular solution theory (RST). Starting from this analysis, the advantage of adding a hydrophilic additive or desorbing agent to reduce the overall adsorption is emphasized. [Pg.275]

Figure 1 gives the measurements of surface tension used for determining the CMCs of sulfonate/Genapol and nonylphenol 30 E.O. mixtures, with the last surfactant being called a desorbent (this term will be justified below). Minimum in surface tension was seen only for a few nonionic solutions (e.g. NP 50 E.O.). In this case, we used dyes that, once solubilized in the micelles, cause the solution to change color, which is another way of measuring the CMC. [Pg.278]

Likewise, in order to evaluate nonionics transport, ethylene-oxide distribution in the cosurfactant (Genapol) was determined by HPLC at two stages of production in test 7 (1) before breakthrough of the desorbent, i.e. in the presence of sulfonate in the effluent and (2) after its breakthrough when the three additives coexist in solution in the form of mixed micelles. [Pg.285]


See other pages where Nonionic micelles is mentioned: [Pg.70]    [Pg.120]    [Pg.1686]    [Pg.321]    [Pg.70]    [Pg.120]    [Pg.1686]    [Pg.321]    [Pg.481]    [Pg.484]    [Pg.2579]    [Pg.2585]    [Pg.2598]    [Pg.128]    [Pg.237]    [Pg.237]    [Pg.237]    [Pg.534]    [Pg.648]    [Pg.473]    [Pg.534]    [Pg.119]    [Pg.245]    [Pg.414]    [Pg.47]    [Pg.231]    [Pg.556]    [Pg.42]   
See also in sourсe #XX -- [ Pg.206 , Pg.207 , Pg.208 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.440 , Pg.441 ]

See also in sourсe #XX -- [ Pg.440 , Pg.441 ]

See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Anionic-nonionic surfactant mixtures critical micelle concentration

Critical micelle concentration nonionic head groups

Inverse nonionic micelles, temperature

Ionic-nonionic mixed micelles

Ionic-nonionic mixed micelles ideality

Ionic-nonionic mixed micelles negative deviation from

Micelle nonionic surfactants

Micelles anionic-nonionic mixed, solubilization

Micelles of nonionic surfactants

Micellization nonionic surfactants, thermodynamic

Mixed Anionic-Nonionic Micelles

Nonionic reverse micelles

Nonionizing

Organic solvents, nonionic surfactant micelles

Phase behavior, nonionic surfactant micelle

Structure of Nonionic Surfactant Micelles in Organic Solvents A SAXS Study

Structures nonionic surfactant micelles

Viscoelastic Worm-Like Micelles in Mixed Nonionic Fluorinated Surfactant Systems

Worm-Like Micelles in a Binary Solution of Nonionic Surfactant

© 2024 chempedia.info