Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles swollen

Emulsion Polymerization. Emulsion polymerization takes place in a soap micelle where a small amount of monomer dissolves in the micelle. The initiator is water-soluble. Polymerization takes place when the radical enters the monomer-swollen micelle (91,92). Additional monomer is supphed by diffusion through the water phase. Termination takes place in the growing micelle by the usual radical-radical interactions. A theory for tme emulsion polymerization postulates that the rate is proportional to the number of particles [N. N depends on the 0.6 power of the soap concentration [S] and the 0.4 power of initiator concentration [i] the average number of radicals per particle is 0.5 (93). [Pg.502]

G. Gompper, S. Zschocke. Elastic properties of interface in a Ginzburg-Landau theory of swollen micells, droplet crystals and lamellar phases. Euro-phys Lett 16 13 -136, 1991. [Pg.741]

In some cases, due to the highly polar character of the sulfate radicals, peroxydisulfate initiators can provide slow polymerization rates with some apolar monomers since the polar sulfate radicals cannot easily penetrate into the swollen micelle structures containing apolar monomers. The use of mercaptans together with the peroxydisulfate type initiators is another method to obtain higher polymerization rates [43]. The mercaptyl radicals are more apolar relative to the free sulfate radicals and can easily interact with the apolar monomers to provide higher polymerization rates. [Pg.195]

With increasing water content the reversed micelles change via swollen micelles 62) into a lamellar crystalline phase, because only a limited number of water molecules may be entrapped in a reversed micelle at a distinct surfactant concentration. Tama-mushi and Watanabe 62) have studied the formation of reversed micelles and the transition into liquid crystalline structures under thermodynamic and kinetic aspects for AOT/isooctane/water at 25 °C. According to the phase-diagram, liquid crystalline phases occur above 50—60% H20. The temperature dependence of these phase transitions have been studied by Kunieda and Shinoda 63). [Pg.8]

A general analysis for microphase catalysis, where microphase includes micelles, swollen micelles, microemulsions and macroemulsions, can be rigorously constructed by writing the... [Pg.150]

FIG. 5 Order parameter for disperse pseudophase water (percolating clusters versus isolated swollen micelles and nonpercolating clusters) derived from self-diffusion data for brine, decane, and AOT microemulsion system of single-phase region illustrated in Fig. 1. The a and arrow denote the onset of percolation in low-frequency conductivity and a breakpoint in water self-diffusion increase. The other arrow (b) indicates where AOT self-diffusion begins to increase. [Pg.257]

The ion-exchange model has also been successfully applied to reactions of hydrophilic anions in microemulsions or alcohol-swollen micelles (Mackay, 1982 Bunton and de Buzzaccarini, 1982 Athanassakis et al., 1982). [Pg.237]

These microdroplets can act as a reaction medium, as do micelles or vesicles. They affect indicator equilibria and can change overall rates of chemical reactions, and the cosurfactant may react nucleophilically with substrate in a microemulsion droplet. Mixtures of surfactants and cosurfactants, e.g. medium chain length alcohols or amines, are similar to o/w microemulsions in that they have ionic head groups and cosurfactant at their surface in contact with water. They are probably best described as swollen micelles, but it is convenient to consider their effects upon reaction rates as being similar to those of microemulsions (Athanassakis et al., 1982). [Pg.271]

Complex formation takes place in an organic solvent or in a water/monomer mixture by reaction of the macroligand with a metal compound (e.g. a Cu(I)-ha-lide). It is supposed that the conditions in the reaction mixture are comparable to those in conventional emulsion polymerization, where monomer droplets stabilized by surfactant molecules coexist with monomer swollen micelles [64]. Reaction sites are presumably the hydrophobic core of the micelles and the monomer droplets as well. Initial results of the micellar-catalyzed ATRP of methyl methacry-... [Pg.292]

As for direct emulsions, the presence of excess surfactant induces depletion interaction followed by phase separation. Such a mechanism was proposed by Binks et al. [ 12] to explain the flocculation of inverse emulsion droplets in the presence of microemulsion-swollen micelles. The microscopic origin of the interaction driven by the presence of the bad solvent is more speculative. From empirical considerations, it can be deduced that surfactant chains mix more easily with alkanes than with vegetable, silicone, and some functionalized oils. The size dependence of such a mechanism, reflected by the shifts in the phase transition thresholds, is... [Pg.113]

As shown in Figure 6.4, the water-insoluble monomer (M) is attracted to the lyophilic ends in the micelles, causing the micelles to swell. The number of swollen micelles per milliliter of water is on the order of 10. However, at the initial stages of polymerization (phase I) most of the monomer is present as globules that resemble those observed in suspension polymerization. [Pg.188]

Microemulsions are thermodynamically stable mixtures. The interfacial tension is almost zero. The size of drops is very small, and this makes the microemulsions look clear. It has been suggested that microemulsion may consists of bicontinuous structures, which sounds more plausible in these four-component microemulsion systems. It has also been suggested that microemulsion may be compared to swollen micelles (i.e., if one solubilizes oil in micelles). In such isotropic mixtures, short-range order exists between droplets. As found from extensive experiments, not all mixtures of water-oil-surfactant-cosurfactant produce a microemulsion. This has led to studies that have attempted to predict the molecular relationship. [Pg.183]

Microemulsions are thermodynamically stable, homogeneous, optically isotropic solutions comprised of a mixture of water, hydrocarbons and amphiphilic compoxmds. The microemulsions are usually four- or three-component systems consisting of surfactant and cosurfactant (termed as emulsifier), oil and water. The cosurfactants are either lower alkanols (like butanol, propanol and hexanol) or amines (Hke butylamine, hexylamine). Microemulsions are often called swollen micelles (Fig. 3) and swollen re-... [Pg.145]

These fluorescent probes have been successful in reporting the structural parameters of surfactant assemblies such as micelles [103], reverse micelles [104], ternary systems [105], swollen micelles [106], microemulsion [107], vesicles [108], liposomes [109], hemimicelles [110], monolayers [111] and bilayers [111]. [Pg.151]

Out of these assemblies, microemulsion droplets and swollen micelles have been widely used as nanoreactors for inorganic nanoparticie synthesis [20-23]. These self-assembled nanosized beakers/droplets provide a robust and tunable environment that permits size-controlled encapsulation of... [Pg.192]

Micelles are spontaneously formed by most surfactants (especially single-chained ones) even at fairly low concentrations in water, whereas at higher surfactant concentrations, with or without the addition of an oil (e.g. octane) or co-surfactant (e.g. pentanol), a diverse range of structures can be formed. These various structures include micelles, multibilayers (liquid crystals), inverted micelles, emulsions (swollen micelles) and a range of microemulsions. In each case, the self-assembled structures are determined by the relative amounts of surfactant, hydrocarbon oil, co-surfactant (e.g. pentanol) and water, and the fundamental requirement that there be no molecular contact between hydrocarbon and water. [Pg.90]

Note RMs, reversed micelles SMs, swollen micelles MEs, W/O microemulsions. [Pg.397]


See other pages where Micelles swollen is mentioned: [Pg.517]    [Pg.495]    [Pg.190]    [Pg.191]    [Pg.193]    [Pg.196]    [Pg.413]    [Pg.266]    [Pg.153]    [Pg.272]    [Pg.282]    [Pg.156]    [Pg.168]    [Pg.168]    [Pg.147]    [Pg.189]    [Pg.145]    [Pg.146]    [Pg.81]    [Pg.287]    [Pg.88]    [Pg.91]    [Pg.92]    [Pg.94]    [Pg.302]    [Pg.304]    [Pg.397]    [Pg.398]    [Pg.399]    [Pg.390]    [Pg.391]    [Pg.399]   
See also in sourсe #XX -- [ Pg.391 ]




SEARCH



Micelle monomer-swollen

Monomer (continued swollen micelles

Monomers monomer-swollen micelles

Swollen reversed micelle

© 2024 chempedia.info