Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid sodium hypochlorite

D/chloro-5-Cyclohexyl-2-Oxo-2,3-D/hydro 1 H-Benzo(fj-Diazepine-1,4 fa) Process Using Sodium Hypochlorite — 40 ml of a solution of sodium hypochlorite of 14.5 British chloro-metric degrees are added to a suspension of 5.4 grams of 7 chloro-5 cyclohexyl-2 oxo-2,3-dihydro 1 H-benzo(f)diazepine-1,4 in BO ml of methylene chloride. The mixture is stirred at room temperature for 15 minutes the solid dissolves rapidly. The organic iayer is decanted, washed with water, dried over anhydrous Sodium sulfate and the solvent evaporated under reduced pressure without exceeding a temperature of 30 C. The residue is taken up in a little diisopropyl ether and the crystals which form are dried. They are recrystallized as rapidly as possible from ethyl acetate. Colorless crystals are obtained (3.9 grams yield, B5%) MP < = 163°C, with decomposition. [Pg.1457]

Sodium bicarbonate, 112-113 Sodium carbonate, 61 Sodium chloride 44q common ion effect and, 439 electrolysis, 499 formation, 3 structure, 36 Sodium chlorine, 4 Sodium hydroxide, 61,84,441 Sodium hypochlorite, 369-370 Sodium stearate, 595 Sodium vapor lamps, 135 Solids... [Pg.696]

Sodium hypochlorite is usually sold in solution in water, where it makes a greenish-yellow liquid. (It is too hygroscopic—it absorbs water from the air—to be used conveniently in solid form.) Household bleaches usually contain sodium hypochlorite in a 3 percent to 6 percent solution. Some sodium hydroxide (lye) is added to keep the pH high to avoid decomposition. If the solution is made more acidic, sodium hypochlorite will dissociate, producing chlorine gas and oxygen. [Pg.191]

Sodium hypochlorite is one of the best disinfectants known, capable of killing bacteria, yeasts, fungus, spores, and even viruses. Because it is an excellent disinfectant as well as a bleaching agent, it is used in many household cleaners. Sodium hypochlorite is also used to disinfect water supplies and swimming pools (although calcium hypochlorite in powder or pellet form is often used as a substitute, due to the convenience of its solid form). [Pg.192]

There was an attempt to treat spreadings of organic sulphides or thiols with calcium hypochlorite in the solid state. These treatments usually ended with a violent reaction followed by the compounds igniting. Nevertheless, this does not represent any danger when using sodium hypochlorite solutions at 15%. [Pg.346]

Although solutions of sodium hypochlorite are useful oxidizing agents, the solid is not very stable. Calcium hypochlorite is used in bleaches, swimming pool treatments, and so forth. The decomposition of OC1- is catalyzed by compounds containing transition metals. [Pg.561]

A. Sodium hypochlorite solution. A solution of sodium hypochlorite 2 is prepared immediately before it is to be used. A mixture of 50 g. (1.25 moles) of sodium hydroxide and 200 ml. of water is swirled until the solid dissolves. The solution is cooled to 0°, and 100 g. of crushed ice is added. The flask is then placed in an ice bath, and chlorine gas from a tank is bubbled through the solution until 41 g. (0.58 mole) is absorbed. An excess of chlorine should be avoided. The solution of sodium hypochlorite is kept in the dark at 0° until needed. [Pg.59]

B. Benzofurazan oxide. A mixture of 21 g. (0.32 mole) of potassium hydroxide and 250 ml. of 95% ethanol in a 1-1. Erlenmeyer flask is heated on a steam bath until the solid dissolves (Note 1). o-Nitro-aniline (40 g., 0.29 mole) (Note 2) is dissolved in the warm alkali solution. The resulting deep red solution is then cooled to 0°, and the sodium hypochlorite solution from part A is added slowly with good stirring over the course of 10 minutes (Note 3). The flocculent yellow precipitate is collected on a large Buchner funnel, washed with 200 ml. of water, and air-dried. The crude product weighs 36.0-36.5 g. and melts at 66-71° (Note 4). The product is purified by recrystallization from a solution made up from 45 ml. of 95% ethanol and 15 ml. of water. Material insoluble in the hot solvent is removed by filtration, and the hot filtrate is allowed to cool to room temperature. The yield of yellow benzofurazan oxide is 31.6-32.5 g. (80-82%), m.p. 72-73°. [Pg.59]

The most widely used, and often most convenient reagents for such one-pot reactions are sodium hypochlorite (45) or hypobromite (16). These reactions are performed in the presence of an organic base (generally triethylamine) that normally enhances the yield of cycloaddition products (45). This method was employed for many intermolecular reactions (71) and also seems especially suited for intramolecular ones (72-77) as well as for the solid-phase synthesis (78) of 2-isoxazolines. Hypohalite can also be replaced by sodium broruite in combination with a catalytic amount of tri-u-butyltin chloride (79). In a related method, O-tributylstannyl oximes were treated with tert-butyl hypochlorite to produce nitrile oxides that were trapped with aUcenes or alkynes to afford the corresponding isoxazolines or isoxazoles in moderate to good yield (80). [Pg.368]

The hypochlorous acid oxidizes the cell walls and kills bacteria. Solid calcium hypochlorite, Ca(OCl)2, and liquid solutions of sodium hypochlorite, NaOCl, can be used to generate hypochlorous acid in place of chlorine gas, for example, in chlorinating swimming pools. The hypochlorite ion generated from Ca(OCl)2 and NaOCl forms an equilibrium with water represented by the equation ... [Pg.275]

Cone. soln. of sodium hypochlorite with up to 42 per cent, of available chlorine have been made under the trade name chloros, by passing chlorine into a soln. of caustic soda of such a strength that the sodium chloride which is formed separates out. The temp, is kept below 27°. The crystals of sodium chloride are removed, and more chlorine is introduced, but the sodium hydroxide is always kept in excess or the soln. will be unstable. A. J. Balard prepared potassium, sodium, and lithium hypochlorites by neutralizing a well-cooled soln. of the base with the acid. E. Soubeiian evaporated in vacuo the liquid obtained by treating a soln. of calcium hypochlorite with sodium carbonate, and obtained, before the liquid had all evaporated, crystals of sodium chloride and of sodium hypochlorite. P. Mayer and R. Schindler obtained solid potassium hypochlorite mixed with potassium hydrocarbonate by the action of chlorine—developed from 10 parts of sodium chloride—on a soln. of 24 parts of potassium hydrocarbonate and one of water. [Pg.268]

Lithium Hypochlorite. Commercial lithium hypochlorite [13840-33-0], LiOCl, is a solid with about 35% available chlorine. It is made from concentrated solutions of sodium hypochlorite and lithium chloride. It consists of 30% lithium hypochlorite and various other salts (34). [Pg.143]

The support originally used for solid-phase synthesis was partially chloromethy-lated cross-linked polystyrene, which was prepared by chloromethylation of cross-linked polystyrene with chloromethyl methyl ether and tin(IV) chloride [1-3] or zinc chloride [4] (Figure 6.1). Haloalkylations of this type are usually only used for the functionalization of supports, and not for selective transformation of support-bound intermediates. Because of the mutagenicity of a-haloethers, other methods have been developed for the preparation of chloromethyl polystyrene. These include the chlorination of methoxymethyl polystyrene (Figure 6.1 [5]), the use of a mixture of dimethoxymethane, sulfuryl chloride, and chlorosulfonic acid instead of chloromethyl methyl ether [6], the chlorination of hydroxymethyl polystyrene [7], and the chlorination of cross-linked 4-methylstyrene-styrene copolymer with sodium hypochlorite [8], sulfuryl chloride [8], or cobalt(III) acetate/lithium chloride [9] (Figure 6.1, Table 6.1). [Pg.205]

The standard disinfectant for many of the world s potable drinking water supply systems (ozone and others are also widely used) and the product of choice for large cooling systems, usually available as a gas for lowest cost, but can be provided by liquids such as sodium hypochlorite (bleach) or solids such as calcium hypochlorite or isocyanurates. Any process contaminant leak tends to increase the chlorine demand, requiring additional chlorine to maintain disinfection rate. Poor penetrant of biomass and significantly reduced efficiencies over pH 8.0. [Pg.433]

Contact of the solid oxidant with organic thiols or sulfides may cause a violent reaction and flash fire [1]. This procedure was recommended formerly for treating spills of sulfur compounds [2,3], but is now withdrawn as potentially hazardous. Use of an aqueous solution of up to 15% concentration, or of 5% sodium hypochlorite solution is recommended [1], Addition of 10 g of oxidant to 5 ml portions of 1-propanethiol or isobutanethiol led to explosions [4]. Application of factorial design techniques to experimental planning gave specific conditions for the safe oxidation of organic sulfides to sulfoxides using calcium hypochlorite or sodium chlorate [5]. [Pg.1362]

Wear protective gloves, laboratory coat, and goggles. If a solution is spilled, absorb on tissue. If solid is spilled, as far as possible, scoop in a container and then rinse the area of the spill with methanol and absorb the methanol onto tissues. Place the tissues in the container with the solid and add sufficient household bleach (5% sodium hypochlorite solution) to cover. Allow to stand at room temperature for at least 2 hours. Add an equal volume of 5% aqueous acetone. Allow to react for 30 minutes and then wash into the drain with water/... [Pg.25]

Aqueous solutions of ammonium salts. Wear nitrile rubber gloves, laboratory coat, eye protection, and self-contained breathing apparatus. Cover the spill with a 1 1 1 mixture by weight of sodium carbonate, clay cat litter (calcium bentonite), and sand. When all of the liquid has been absorbed, scoop the mixture into a plastic pail and place in the fume hood. Add sufficient 1% aqueous sodium hydroxide solution to dissolve the sodium carbonate in the spill mix and to ensure that the liquid is basic. Estimate the volume of ammonium sulfide solution that was spilled and add 200 mL of household chlorine bleach containing 5.25% sodium hypochlorite for each 10 mL of commercial ammonium sulfide solution (commercial ammonium sulfide solution is about 20% this volume of bleach allows a 25% excess). Allow the mixture to stand in the fume hood overnight and decant the liquid into the drain. Dispose of the solid (sand and calcium bentonite) in normal refuse.3,4... [Pg.48]


See other pages where Solid sodium hypochlorite is mentioned: [Pg.596]    [Pg.900]    [Pg.279]    [Pg.100]    [Pg.74]    [Pg.214]    [Pg.299]    [Pg.870]    [Pg.50]    [Pg.322]    [Pg.260]    [Pg.269]    [Pg.150]    [Pg.292]    [Pg.241]    [Pg.495]    [Pg.217]    [Pg.336]    [Pg.396]    [Pg.118]    [Pg.231]    [Pg.51]    [Pg.161]   
See also in sourсe #XX -- [ Pg.451 ]




SEARCH



Hypochlorites Sodium hypochlorite

Sodium hypochlorite

© 2024 chempedia.info