Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-phase microextraction characteristics

Principles and Characteristics Solid-phase microextraction (SPME) is a patented microscale adsorp-tion/desorption technique developed by Pawliszyn et al. [525-531], which represents a recent development in sample preparation and sample concentration. In SPME analytes partition from a sample into a polymeric stationary phase that is thin-coated on a fused-silica rod (typically 1 cm x 100 p,m). Several configurations of SPME have been proposed including fibre, tubing, stirrer/fan, etc. SPME was introduced as a solvent-free sample preparation technique for GC. [Pg.129]

Table 3.45 Characteristics of solid-phase microextraction Advantages... Table 3.45 Characteristics of solid-phase microextraction Advantages...
Principles and Characteristics As mentioned already (Section 3.5.2) solid-phase microextraction involves the use of a micro-fibre which is exposed to the analyte(s) for a prespecified time. GC-MS is an ideal detector after SPME extraction/injection for both qualitative and quantitative analysis. For SPME-GC analysis, the fibre is forced into the chromatography capillary injector, where the entire extraction is desorbed. A high linear flow-rate of the carrier gas along the fibre is essential to ensure complete desorption of the analytes. Because no solvent is injected, and the analytes are rapidly desorbed on to the column, minimum detection limits are improved and resolution is maintained. Online coupling of conventional fibre-based SPME coupled with GC is now becoming routine. Automated SPME takes the sample directly from bottle to gas chromatograph. Split/splitless, on-column and PTV injection are compatible with SPME. SPME can also be used very effectively for sample introduction to fast GC systems, provided that a dedicated injector is used for this purpose [69,70],... [Pg.437]

Rancidity measurements are taken by determining the concentration of either the intermediate compounds, or the more stable end products. Peroxide values (PV), thiobarbituric acid (TBA) test, fatty acid analysis, GC volatile analysis, active oxygen method (AOM), and sensory analysis are just some of the methods currently used for this purpose. Peroxide values and TBA tests are two very common rancidity tests however, the actual point of rancidity is discretionary. Determinations based on intermediate compounds (PV) are limited because the same value can represent two different points on the rancidity curve, thus making interpretations difficult. For example, a low PV can represent a sample just starting to become rancid, as well as a sample that has developed an extreme rancid characteristic. The TBA test has similar limitations, in that TBA values are typically quadratic with increasing oxidation. Due to the stability of some of the end-products, headspace GC is a fast and reliable method for oxidation measurement. Headspace techniques include static, dynamic and solid-phase microextraction (SPME) methods. Hexanal, which is the end-product formed from the oxidation of Q-6 unsaturated fatty acids (linoleate), is often found to be a major compound in the volatile profile of food products, and is often chosen as an indicator of oxidation in meals, especially during the early oxidative changes (Shahidi, 1994). [Pg.535]

Solid-phase microextraction (SPME) is a technique that was first reported by Louch et al. in 1991 (35). This is a sample preparation technique that has been applied to trace analysis methods such as the analysis of flavor components, residual solvents, pesticides, leaching packaging components, or any other volatile organic compounds. It is limited to gas chromatography methods because the sample must be desorbed by thermal means. A fused silica fiber that was previously coated with a liquid polymer film is exposed to an aqueous sample. After adsorption of the analyte onto the coated fiber is allowed to come to equilibrium, the fiber is withdrawn from the sample and placed directly into the heated injection port of a gas chromatograph. The heat causes desorption of the analyte and other components from the fiber and the mixture is quantitatively or qualitatively analyzed by GC. This preparation technique allows for selective and solventless GC injections. Selectivity and time to equilibration can be altered by changing the characteristics of the film coat. [Pg.91]

Harris et al. [132] discuss a method that uses solid-phase microextraction (SPME) for molecular and stable isotope analysis of petrol-range hydrocarbons (C5-C10) in oils. The headspace SPME method produced characteristic isotope values for individual compounds in oils, and was demonstrated to be a more efficient technique to replace purge and trap. [Pg.359]

Principles and Characteristics Normally, analysis of solid materials prior to chromatographic separation and detection requires some form of extraction with organic solvents, either by heating (Soxhlet, Soxtec, etc), agitation (sonication or shake-flask extraction) of the organic solvent-solid mixture, or by more recently introduced techniques (MAE, SEE, ASE ). In particular the latter approaches are costly in terms of equipment. It has been shown that solid-phase microextraction (SPME) can also be utilised for direct analysis of solids [991]. [Pg.289]


See other pages where Solid-phase microextraction characteristics is mentioned: [Pg.449]    [Pg.2]    [Pg.284]    [Pg.32]    [Pg.82]    [Pg.133]    [Pg.139]    [Pg.198]    [Pg.381]    [Pg.195]    [Pg.231]   
See also in sourсe #XX -- [ Pg.184 , Pg.200 ]




SEARCH



Characteristic solid phases

Microextraction

Microextractions

Microextractions solid-phase

Phase characteristic

© 2024 chempedia.info