Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface buried

Finally, it is difficult to caUbrate the depth scale in a depth profile. This situation is made more compHcated by different sputtering rates of materials. Despite these shortcomings, depth profiling by simultaneous ion sputtering/aes is commonly employed, because it is one of the few techniques that can provide information about buried interfaces, albeit in a destmctive manner. [Pg.282]

Although the above experiments involved exposure to the environment of unbonded surfaees, the same proeess oeeurs for buried interfaces within an adhesive bond. This was first demonstrated by using electrochemical impedance spectroscopy (EIS) on an adhesive-covered FPL aluminum adherend immersed in hot water for several months [46]. EIS, which is commonly used to study paint degradation and substrate corrosion [47,48], showed absorption of moisture by the epoxy adhesive and subsequent hydration of the underlying aluminum oxide after 100 days (Fig. 10). After 175 days, aluminum hydroxide had erupted through the adhesive. [Pg.959]

Table 2. Common techniques for the investigation of polymeric buried interfaces... [Pg.363]

There are still other surface analysis techniques including ellipsometry, surface enhanced Raman scattering, light scattering, nano-hardness measurements etc. which are used for specific investigations. It is, however, already evident from this discussion that many new and powerful techniques now are available which offer the capability of investigating various aspects of polymer surfaces on a molecular level. Some of those techniques are surface specific while others can be used for the analysis of buried interfaces, too. [Pg.370]

To investigate the interface between polymeric materials, i.e. a so-called buried interfaces, several techniques are available schematically shown in Fig. 4 and listed in Table 2. They have quite different characteristics and depth resolution depending... [Pg.370]

X-ray reflectometry (XR) has already been described in Sect. 2.1 as a technique for polymer surface investigations. If a suitable contrast between components is present buried interfaces may also be investigated (Fig. 4d) [44,61,62]. The contrast is determined by the difference in electron density between materials. It is, in the case of interfaces between polymers, only achieved if one component contains heavy atoms (chlorine, bromine, metals, etc.). Alternatively the location of the interface may be determined by the deposition of heavy markers at the interface. [Pg.374]

Thus, for the investigation of buried polymer interfaces, several techniques with molecular resolution are also available. Recently NMR spin diffusion experiments [92] have also been applied to the analysis of a transition zone in polymer blends or crystals and even the diffusion and mobility of chains within this layer may be analyzed. There are still several other techniques used, such as radioactive tracer detection, forced Rayleigh scattering or fluorescence quenching, which also yield valuable information on specific aspects of buried interfaces. They all depend very critically on sample preparation and quality, and we will discuss this important aspect in the next section. [Pg.378]

When dealing with polymer blends or blockcopolymers, surface enrichment or microstructures may be observed as already discussed in Sect. 3.1. Quite similar effects may be expected for buried interfaces e.g. between polymer and substrate where one component may be preferentially enriched. In a system of PS, PVP and diblock copolymer PS-6-PVP it has been shown by FRS that the copolymer enrichment is strongly concentration dependent [158]. In a mixed film of PS(D) and end-functionalized PS on a silicon wafer the end-functionalized chains will be attached to the silicon interface and can be detected by NR [159],... [Pg.387]

In the analysis of polymer surfaces and interfaces there has been tremendous progress in recent years. This is to a large extent due to the development of surface- and interface-sensitive analytical techniques which previously had not been applied to polymers. It is thus possible to achieve molecular resolution both for the free polymer surface and for buried interfaces between polymers. In addition, suitable sample preparation techniques are available and extremely homogeneous and smooth polymer thin films can be prepared. They may be put together to investigate the interface between polymers. [Pg.394]

Fourth-Order Coherent Raman Scattering at Buried Interfaces... [Pg.103]

Interfaces between two different media provide a place for conversion of energy and materials. Heterogeneous catalysts and photocatalysts act in vapor or liquid environments. Selective conversion and transport of materials occurs at membranes of biological tissues in water. Electron transport across solid/solid interfaces determines the efficiency of dye-sensitized solar cells or organic electroluminescence devices. There is hence an increasing need to apply molecular science to buried interfaces. [Pg.103]

However, analyses of the interface surrounded by some medium are not easy. When an interface of interest is exposed to a vacuum, electron-based or ion-based methods are available to determine the chemical composition and molecular structure of the top layers. The charged particles with limited penetration range result in a good vertical resolution. Buried interfaces are beyond the range of penetration. Photons, an alternative class of probe particles, have better ability for penetration. When the linear response to the incident electric field is analyzed, the vertical resolution is limited to the order of the wavelength, which is greater than the thickness of the top layers. [Pg.103]

Successful applications of fourth-order coherent Raman scattering are presented. Interface-selective detection of Raman-active vibrations is now definitely possible at buried interfaces. It can be recognized as a Raman spectroscopy with interface selectivity. Vibrational sum-frequency spectroscopy provides an interface-selective IR spectroscopy in which the vibrational coherence is created in the IR resonant transition. The two interface-selective methods are complementary, as has been experienced with Raman and IR spectroscopy in the bulk. [Pg.113]

Liquid interfaces are widely found in nature as a substrate for chemical reactions. This is rather obvious in biology, but even in the diluted stratospheric conditions, many reactions occur at interfaces like the surface of ice crystallites. The number of techniques available to carry out these studies is, however, limited and this is particularly true in optics, since linear optical methods do not possess the ultimate molecular resolution. This resolution is inherent to nonlinear optical processes of even order. For liquid-liquid systems, optics turns out to be rather powerful owing to the possibility of nondestructive y investigating buried interfaces. Furthermore, it appears that planar interfaces are not the only config-... [Pg.160]

Yang G-R, Zhao Y-P, Wang B, BamatE, McDonald J, Lu T-M (1998) Chemical interactions at Ta/fluorinated polymer buried interfaces. Appl Phys Lett 72 1846-1847... [Pg.210]

Brillson LJ (2001) Nanoscale luminescence spectroscopy of defects at buried interfaces and ultrathin films. J Vac Sci Technol B 19 1762-1769... [Pg.210]

The characterization of the surface chemistry of the modified polymer is one step in understanding the mechanism for cells adhesion. The next crucial step is to determine the nature and extent of chemical interactions between the overlayer of interest and the modified polymer surface. This step presents a challenge because cmrently there are no techniques available with the sensitivity to characterize chemical interactions for an atomically thin buried interface. Several approaches have been used to analyze buried interfaces. Ion sputter depth profiling (typically done with Ar ions) in conjunction with XPS can be used to evaluate a buried interface for overlayers >10 nm [2]. [Pg.31]


See other pages where Interface buried is mentioned: [Pg.230]    [Pg.296]    [Pg.347]    [Pg.504]    [Pg.563]    [Pg.646]    [Pg.217]    [Pg.421]    [Pg.698]    [Pg.357]    [Pg.357]    [Pg.360]    [Pg.361]    [Pg.370]    [Pg.371]    [Pg.103]    [Pg.104]    [Pg.110]    [Pg.94]    [Pg.189]    [Pg.190]    [Pg.210]    [Pg.212]    [Pg.197]    [Pg.19]   
See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.2 , Pg.111 ]

See also in sourсe #XX -- [ Pg.234 , Pg.236 , Pg.239 ]

See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Buried

Burying

© 2024 chempedia.info