Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion solid phases

Intra-particle pores can form during weathering, upon solid formation, or may be partially collapsed interlayer space between mineral sheets, i.e., vermiculite and montmorillonite. The rate of diffusion through a pore is dependent on pore size, particle size, tortuosity, chemical interactions, chemical flux, and whether the pore is continuous or discontinuous. Besides pore diffusion, solid-phase diffusion is also a transport-limited process. Solid phase diffusion is dependent on the characteristics and interactions of the diffusant and the solid (53). Since there exists a range of diffusion rates in the soil, it follows that with increasing residence time the fraction of contaminants in the more remote areas of particles (accessible via slow diffusion) will increase. This slow sorption phenomenon is often the explanation researchers use to account for the slow continuous sorption and desorption observed between metals and natural materials (42,50,54). [Pg.117]

This study detects the defect of the void and the exfoliation in the solid phase diffusion bonding interface of ductile cast iron and stainless steel with a nickel insert metal using ultrrasonic testing method, and examine the influence of mutual interference of the reflectional wave both the defect and the interface. [Pg.833]

This study was in real time measured that the reflective echo height of the bonding interface in the solid phase diffused bonding process of carbon steel and titanium using ultrasonic testing method. As a result, the following were made discernment. [Pg.848]

On the other hand, the reliability of the product improves, too, if each state of the plasticity deformation, the creep deformation, and the diffusion joint in the solid phase diffusion bonding as the bonding process, is accurately understood, and the bonding process is controlled properly. [Pg.849]

Combined Pore and Solid Diffusion In porous adsorbents and ion-exchange resins, intraparticle transport can occur with pore and solid diffusion in parallel. The dominant transport process is the faster one, and this depends on the relative diffusivities and concentrations in the pore fluid and in the adsorbed phase. Often, equilibrium between the pore fluid and the solid phase can be assumed to exist locally at each point within a particle. In this case, the mass-transfer flux is expressed by ... [Pg.1512]

Component Separation by Progressive Freezing When the distribution coefficient is less than I, the first solid which ciystaUizes contains less solute than the liquid from which it was formed. As the frac tion which is frozen increases, the concentration of the impurity in the remaining liquid is increased and hence the concentration of impurity in the sohd phase increases (for k < 1). The concentration gradient is reversed for k > 1. Consequently, in the absence of diffusion in the solid phase a concentration gradient is estabhshed in the frozen ingot. [Pg.1990]

If the bulk-liquid phase is well mixed and no diffusion occurs in the solid phase, a simple expression relating the solid-phase composition to the frac tion frozen can be obtained for the case in which the distribution coefficient is independent of composition and fraction frozen... [Pg.1990]

We saw in Chapter 6 that diffusive transformations (like the growth of metal crystals from the liquid during solidification, or the growth of one solid phase at the expense of another during a polymorphic change) involve a mechanism in which atoms are attached to the surfaces of the growing crystals. This means that diffusive transformations can only take place if crystals of the new phase are already present. But how do these crystals - or nuclei - form in the first place ... [Pg.68]

Treatment of thermal conductivity inside the catalyst can be done similarly to that for pore diffusion. The major difference is that while diffusion can occur in the pore volume only, heat can be conducted in both the fluid and solid phases. For strongly exothermic reactions and catalysts with poor heat conductivity, the internal overheating of the catalyst is a possibility. This can result in an effectiveness factor larger than unity. [Pg.26]

Lateral density fluctuations are mostly confined to the adsorbed water layer. The lateral density distributions are conveniently characterized by scatter plots of oxygen coordinates in the surface plane. Fig. 6 shows such scatter plots of water molecules in the first (left) and second layer (right) near the Hg(l 11) surface. Here, a dot is plotted at the oxygen atom position at intervals of 0.1 ps. In the first layer, the oxygen distribution clearly shows the structure of the substrate lattice. In the second layer, the distribution is almost isotropic. In the first layer, the oxygen motion is predominantly oscillatory rather than diffusive. The self-diffusion coefficient in the adsorbate layer is strongly reduced compared to the second or third layer [127]. The data in Fig. 6 are qualitatively similar to those obtained in the group of Berkowitz and coworkers [62,128-130]. These authors compared the structure near Pt(lOO) and Pt(lll) in detail and also noted that the motion of water in the first layer is oscillatory about equilibrium positions and thus characteristic of a solid phase, while the motion in the second layer has more... [Pg.361]

Sublimation (diffusion) printing is a textile process in which color patterns in dry die crystals are transferred from a release film to the fabric under high heat and pressure. The process has been adapted to plastics. The equipment used is very similar to that used for hot stamping. Under heat and pressure, the dye crystals sublime (go directly to the vapor phase from the solid phase without melting) and the vapor penetrates the plastic product. As a result, the decoration is very durable and wear resistant. It is also cost competitive against other processes such as two-step injection molding or silk screening. [Pg.545]

Equation (15) is derived under the assumption that the amount of adsorbed component transferred by flow or diffusion of the solid phase may be neglected. This assumption is clearly justified in cases of fixed-bed operation, and it is believed to be permissible in many cases of slurries or fluidized beds, since the absolute amount of adsorbed component will probably be quite low due to its low diffusivity in the interior of the catalyst pellet. The assumption can, however, be waived by including in Eq. (15) the appropriate diffusive and convective terms. [Pg.88]

The characteristic feature of solid—solid reactions which controls, to some extent, the methods which can be applied to the investigation of their kinetics, is that the continuation of product formation requires the transportation of one or both reactants to a zone of interaction, perhaps through a coherent barrier layer of the product phase or as a monomolec-ular layer across surfaces. Since diffusion at phase boundaries may occur at temperatures appreciably below those required for bulk diffusion, the initial step in product formation may be rapidly completed on the attainment of reaction temperature. In such systems, there is no initial delay during nucleation and the initial processes, perhaps involving monomolec-ular films, are not readily identified. The subsequent growth of the product phase, the main reaction, is thereafter controlled by the diffusion of one or more species through the barrier layer. Microscopic observation is of little value where the phases present cannot be unambiguously identified and X-ray diffraction techniques are more fruitful. More recently, the considerable potential of electron microprobe analyses has been developed and exploited. [Pg.37]

X-ray scattering studies at a renewed pc-Ag/electrolyte interface366,823 provide evidence for assuming that fast relaxation and diffu-sional processes are probable at a renewed Sn + Pb alloy surface. Investigations by secondary-ion mass spectroscopy (SIMS) of the Pb concentration profile in a thin Sn + Pb alloy surface layer show that the concentration penetration depth in the solid phase is on the order of 0.2 pm, which leads to an estimate of a surface diffusion coefficient for Pb atoms in the Sn + Pb alloy surface layer on the order of 10"13 to lCT12 cm2 s i 820 ( p,emicai analysis by electron spectroscopy for chemical analysis (ESCA) and Auger ofjust-renewed Sn + Pb alloy surfaces in a vacuum confirms that enrichment with Pb of the surface layer is probable.810... [Pg.144]

Various pc electrode models have been tested.827 Using the independent diffuse layer electrode model74,262 the value of E n = -0.88 V (SCE) can be simulated for Cd + Pb alloys with 63% Pb if bulk and surface compositions coincide. However, large deviations of calculated and experimental C,E curves are observed at a 0. Better correspondence between experimental and calculated C,E curves was obtained with the common diffuse-layer electrode model,262 if the Pb percentage in the solid phase is taken as 20%. However, the calculated C, at a Ois noticeably lower than the experimental one. It has been concluded that Pb is the surface-active component in Cd + Pb alloys, but there are noticeable deviations from electrical double-layer models for composite electrodes.827... [Pg.146]

In addition to the insoluble polymers described above, soluble polymers, such as non-cross-linked PS and PEG have proven useful for synthetic applications. However, since synthesis on soluble supports is more difficult to automate, these polymers are not used as extensively as insoluble beads. Soluble polymers offer most of the advantages of both homogeneous-phase chemistry (lack of diffusion phenomena and easy monitoring) and solid-phase techniques (use of excess reagents and ease of isolation and purification of products). Separation of the functionalized matrix is achieved by either precipitation (solvent or heat), membrane filtration, or size-exclusion chromatography [98,99]. [Pg.87]

In addition to chemical reactions, the isokinetic relationship can be applied to various physical processes accompanied by enthalpy change. Correlations of this kind were found between enthalpies and entropies of solution (20, 83-92), vaporization (86, 91), sublimation (93, 94), desorption (95), and diffusion (96, 97) and between the two parameters characterizing the temperature dependence of thermochromic transitions (98). A kind of isokinetic relationship was claimed even for enthalpy and entropy of pure substances when relative values referred to those at 298° K are used (99). Enthalpies and entropies of intermolecular interaction were correlated for solutions, pure liquids, and crystals (6). Quite generally, for any temperature-dependent physical quantity, the activation parameters can be computed in a formal way, and correlations between them have been observed for dielectric absorption (100) and resistance of semiconductors (101-105) or fluidity (40, 106). On the other hand, the isokinetic relationship seems to hold in reactions of widely different kinds, starting from elementary processes in the gas phase (107) and including recombination reactions in the solid phase (108), polymerization reactions (109), and inorganic complex formation (110-112), up to such biochemical reactions as denaturation of proteins (113) and even such biological processes as hemolysis of erythrocytes (114). [Pg.418]

Many investigators have studied diffusion in systems composed of a stationary porous solid phase and a continuous fluid phase in which the solute diffuses. The effective transport coefficients in porous media have often been estimated using the following expression ... [Pg.566]


See other pages where Diffusion solid phases is mentioned: [Pg.233]    [Pg.281]    [Pg.378]    [Pg.233]    [Pg.281]    [Pg.378]    [Pg.833]    [Pg.834]    [Pg.848]    [Pg.849]    [Pg.2826]    [Pg.481]    [Pg.1990]    [Pg.124]    [Pg.286]    [Pg.435]    [Pg.133]    [Pg.3]    [Pg.212]    [Pg.18]    [Pg.1275]    [Pg.1502]    [Pg.933]    [Pg.990]    [Pg.20]    [Pg.41]    [Pg.258]    [Pg.278]    [Pg.228]    [Pg.354]    [Pg.355]    [Pg.14]   
See also in sourсe #XX -- [ Pg.66 , Pg.86 , Pg.240 , Pg.241 , Pg.265 , Pg.274 , Pg.280 , Pg.282 , Pg.285 ]

See also in sourсe #XX -- [ Pg.66 , Pg.86 , Pg.240 , Pg.241 , Pg.265 , Pg.274 , Pg.280 , Pg.282 , Pg.285 ]




SEARCH



Phase diffusion

© 2024 chempedia.info