Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reference conditions

The data required in order to set up a gradient analysis may make this approach impractical for performing screening for effects over large regions. For screening in order to identify areas of potential effects due to contamination, a reference condition approach may be more suitable. [Pg.349]

Another approach is to establish a reference condition that determines either by field data or by consultation with stakeholders the desired state of the ecological system. Both approaches have advantages and disadvantages. [Pg.349]

Establishing a reference condition by using field data typically involves a survey of the composition of the biological community at a variety of sites with minimal human activity but also represents the variety of habitat types or landforms that exists with the area being managed. A multivariate description, similar to that of the approach of Kersting discussed earlier, can be constructed for each habitat or landform type. This multivariate description is the reference condition. In this manner, the variability of the ecological system that is characteristic of each type of site can be represented. [Pg.349]

Sites that are suspected of having contaminant effects are sampled and their community compositions compared to the appropriate reference condition. If the suspected site is found to be different from the reference condition by a specified amount, then it can be identified for further investigation. In this manner, a variety of sites can be screened for potential impacts. [Pg.349]

The difficulty with this approach is that it is difficult to assign causality because only minimally impacted sites are sampled. Sampling of sites with known impacts from a variety of known stressors would be more useful in establishing causality and such a process would approach the gradient design. Unfortunately, sampling to such an extent may not be possible given available time and resources. [Pg.349]


Accuracies of the flow meters discussed herein are specified as either a percentage of the full-scale flow or as a percentage of the actual flow rate. It may be convenient in some appHcations to compare the potential inaccuracies in actual volumetric flow rates. For example, in reading two Hters per minute (LPM) on a flow meter rated for five LPM, the maximum error for a 1% of full-scale accuracy specification would be 0.01 x 5 = 0.05 LPM. If another flow meter of similar range, but having 1% of actual flow rate specification, were used, the maximum error would be 0.01 x 2 = 0.02 LPM. To minimize errors, meters having full-scale accuracy specifications are normally not used at the lower end of their range. Whenever possible, performance parameters should be assessed for the expected installation conditions, not the reference conditions that are the basis of nominal product performance specifications. [Pg.56]

If appropriate enthalpy data are unavailable, estimates can be obtained by first defining reference states for both solute and solvent. Often the most convenient reference states are crystalline solute and pure solvent at an arbitrarily chosen reference temperature. The reference temperature selected usually corresponds to that at which the heat of crystallization A/ of the solute is known. The heat of crystallization is approximately equal to the negative of the heat of solution. For example, if the heat of crystallization is known at then reasonable reference conditions would be the solute as a soUd and the solvent as a Uquid, both at The specific enthalpies then could be evaluated as... [Pg.341]

Manufacturers of measurement devices always state the accuracy of the instrument. However, these statements always specify specific or reference conditions at which the measurement device will perform with the stated accuracy, with temperature and pressure most often appearing in the reference conditions. When the measurement device is apphedat other conditions, the accuracy is affected. Manufacturers usually also provide some statements on how accuracy is affected when the conditions of use deviate from the referenced conditions in the statement of accuracy. Although appropriate cahbration procedures can minimize some of these effects, rarely can they be totally eliminated. It is easily possible for such effects to cause a measurement device with a stated accuracy of 0.25 percent of span at reference conditions to ultimately provide measured values with accuracies of 1 percent or less. Microprocessor-based measurement devices usually provide better accuracy than the traditional electronic measurement devices. [Pg.758]

Reliability. Data available from the manufacturers can be expressed in various ways and at various reference conditions. Often, previous experience with the measurement device within the purchaser s organization is weighted most heavily. [Pg.758]

The equations and performance parameters for all the major components of a power train must be corrected for ambient conditions and certain parameters must be further corrected to design conditions to accurately compute the degradation. Therefore, to fully compute the performance, and degradation of the plant and all its components, the actual, corrected, and transposed to reference conditions of critical parameters must be computed. [Pg.701]

The term solubility thus denotes the extent to which different substances, in whatever state of aggregation, are miscible in each other. The constituent of the resulting solution present in large excess is known as the solvent, the other constituent being the solute. The power of a solvent is usually expressed as the mass of solute that can be dissolved in a given mass of pure solvent at one specified temperature. The solution s temperature coefficient of solubility is another important factor and determines the crystal yield if the coefficient is positive then an increase in temperature will increase solute solubility and so solution saturation. An ideal solution is one in which interactions between solute and solvent molecules are identical with that between the solute molecules and the solvent molecules themselves. A truly ideal solution, however, is unlikely to exist so the concept is only used as a reference condition. [Pg.59]

Tables 2-16, 2-17, 2-18, and 2-19 are setup with base reference conditions. In order to correct or change any base condition, the appropriate multiplier(s) must be used. Tables 2-16, 2-17, 2-18, and 2-19 are setup with base reference conditions. In order to correct or change any base condition, the appropriate multiplier(s) must be used.
The ratio f/f° is called activity, a. Note This is not the activity coefficient. The activity is an indication of how active a substance is relative to its standard state (not necessarily zero pressure), f°. The standard state is the reference condition, which may be anything however, most references are to constant temperature, with composition and pressure varying as required. Fugacity becomes a corrected pressure, representing a specific component s deviation from ideal. The fugacity coefficient is ... [Pg.5]

Standard Ton Conditions. These are taken by industry to represent the refrigeration tonnage of a system when operating with an 86°F condenser temperature and a 5°F evaporator temperature. This is a comparative reference condition and does not need interpolation for effective evaluation of other tonnage requirements and conditions. [Pg.351]

It is a common practice to evaluate the molal volume ( V) of an ideal gas at a set of reference conditions known as the standard state. If the standard state is chosen to be... [Pg.338]

Method 2. Use mean heat capacity data from Table 2-45 with reference conditions of P = 0 and T = 25°C for the combustion gases. Then the equation for T, becomes... [Pg.363]

If properties are being accurately quoted it is important that the reference conditions are defined, as these can vary. This also has implications for metering. The main reference conditions are ... [Pg.275]

Reference condition Upstream condition Downstream condition Maximum flow condition... [Pg.180]

The desired carriage position is relative to the measured mandrel s circumferential position and can be visualized with the aid of Figure 5. The count PU LS Eman continues to increment. This is expressed by the ordinate, in terms of units of the circumference. The first peiss, the first dwell and the second pass are shown schematically. The desired locus of the two relative positions result in the line segments represented in bold print. The reference condition for the mandrel position at the start of the pass is PULSEman ref- The actual mandrel s position after an increment of time is PULSEman- The desired carriage position is PULSEqarwant- The two previous conditions are represented by the darkened arrow on the sketch. [Pg.545]

Since the present study aims at carrying out the investigation of the break-down phenomenon and searching for the possible mechanism of the phenomenon, we have chosen the similar condition as in [1] for the wall shear stress to induce break-down The reference temperature in the degradation studies was 60 °C. This value may be lower than the value used in a typical DHS. In a low-pressure system, however, it was necessary to use lower the temperature to avoid the formation of bubbles. For parametric studies, one of the variables was varied while the other variables were fixed at the reference condition (Tanperature 60 °C Re 8,000 Surfactant concentration 200ppm Volume of solution charged 0.010 m ). [Pg.690]

Electrochemical cells can be constructed using an almost limitless combination of electrodes and solutions, and each combination generates a specific potential. Keeping track of the electrical potentials of all cells under all possible situations would be extremely tedious without a set of standard reference conditions. By definition, the standard electrical potential is the potential developed by a cell In which all chemical species are present under standard thermodynamic conditions. Recall that standard conditions for thermodynamic properties include concentrations of 1 M for solutes in solution and pressures of 1 bar for gases. Chemists use the same standard conditions for electrochemical properties. As in thermodynamics, standard conditions are designated with a superscript °. A standard electrical potential is designated E °. [Pg.1381]

No systematic studies of a number of compoimds have yet appeared to discover correlations suggestive of mechanism. This paper presents the fractional conversions and reaction rates measured under reference conditions (50 mg contaminants/m ) in air at 7% relative humidity (1000 mg/m H2O), for 18 compounds including representatives of the important contaminant classes of alcohols, ethers, alkanes, chloroethenes, chloroalkanes, and aromatics. Plots of these conversions and rates vs. hydroxyl radical and chlorine radical rate constants, vs. the reactant coverage (dark conditions), and vs. the product of rate constant times coverage are constructed to discern which of the proposed mechanistic suggestions appear dominant. [Pg.435]

IR absorbance was measured with a Fourier-transform IR spectrometer. The absorbance at wave number a is defined as (1 /TV) In [F(U0)/ F(U)], where N 10 is the number of useful reflections at the electrochemical interface, F(U) the light intensity at wave number a reaching the detector at potential U, and F(U0) the same but under reference conditions at potential U0. [Pg.47]

If Type I adsorption behavior is obeyed, a plot of PA/v versus PA should be linear with slope l/vm. Once the volume corresponding to a mono-layer has been determined, it can be converted to the number of molecules adsorbed by dividing by the molal volume at the reference conditions and multiplying by Avogadro s number (N0). When this number of molecules is multiplied in turn by the area covered per adsorbed molecule (a), the total surface area of the catalyst (S) is obtained. Thus,... [Pg.175]

The reactor volume is taken as the volume of the reactor physically occupied by the reacting fluids. It does not include the volume occupied by agitation devices, heat exchange equipment, or head-room above liquids. One may arbitrarily select the temperature, pressure, and even the state of aggregation (gas or liquid) at which the volumetric flow rate to the reactor will be measured. For design calculations it is usually convenient to choose the reference conditions as those that prevail at the the inlet to the reactor. However, it is easy to convert to any other basis if the pressure-volume-temperature behavior of the system is known. Since the reference volumetric flow rate is arbitrary, care must be taken to specify precisely the reference conditions in order to allow for proper interpretation of the resultant space time. Unless an explicit statement is made to the contrary, we will choose our reference state as that prevailing at the reactor inlet and emphasize this choice by the use of the subscript zero. Henceforth,... [Pg.255]

The space time is not necessarily equal to the average residence time of an element of fluid in the reactor. Variations in the number of moles on reaction as well as variations in temperature and pressure can cause the volumetric flow rate at arbitrary points in the reactor to differ appreciably from that corresponding to inlet conditions. Consequently, even though the reference conditions may be taken as those prevailing at the reactor inlet, the space time need not be equal to the mean residence time of the fluid. The two quantities are equal only if all of the following conditions are met. [Pg.256]

Like the definition of the space time, the definition of the space velocity involves the volumetric flow rate of the reactant stream measured at some reference condition. A space velocity of 10 hr-1 implies that every hour, 10 reactor volumes of feed can be processed. [Pg.256]

Reactor inlet conditions are particularly useful as reference conditions for measuring the input volumetric flow rate in that they not only give physical meaning to CA0 and but also usually lead to cancellation of CA0 with a similar term appearing in the reaction rate expression. [Pg.264]

It is particularly convenient to choose the reference conditions at which the volumetric flow rate is measured as the temperature and pressure prevailing at the reactor inlet, because this choice leads to a convenient physical interpretation of the parameters and CA0 and, in many cases, one finds that the latter quantity cancels a similar term appearing in the reaction rate expression. Unless otherwise specified, this choice of reference conditions is used throughout the remainder of this text. For constant density systems and this choice of reference conditions, the space time t then becomes numerically equal to the average residence time of the fluid in the reactor. [Pg.272]

From changes in free energy in standard reference conditions it is possible to calculate equilibrium constants for reactions involving several reactants and products. Consider, for example, the chemical reaction aA + bB = cC + dD at equilibrium in solution. For this reaction we can define a stoichiometric equilibrium constant in terms of the concentrations of the reactants and products as... [Pg.121]

Performance parameters of the electrolysis include the applied voltage, E (V), the applied current, I (A), and the hydrogen production rate, Q (Nt/h) at the reference condition of 0.1 MPa (1 bar) and 273 K (0°C). The Faraday efficiency, cr, expressed in Equation 4.6, is the ratio of AG to the applied power, I E, that is, the ratio of the theoretical electric power needed for the electrolysis to the actually applied power of the cell. Thus, the Faraday efficiency is one useful measurement to judge electrolysis performance. [Pg.130]

EQS-QN] criteria for aquatic life and human health protection to characterise reference conditions and to prove ecological status class boundaries in surface water Exposure Exposure Exposure Risk analysis Risk estimate... [Pg.406]


See other pages where Reference conditions is mentioned: [Pg.370]    [Pg.59]    [Pg.107]    [Pg.499]    [Pg.382]    [Pg.2161]    [Pg.149]    [Pg.355]    [Pg.260]    [Pg.275]    [Pg.275]    [Pg.26]    [Pg.158]    [Pg.167]    [Pg.864]    [Pg.93]    [Pg.175]    [Pg.133]    [Pg.35]    [Pg.412]    [Pg.327]   
See also in sourсe #XX -- [ Pg.349 ]

See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Reference conditions threshold values)

Standard and reference conditions

Standard reference conditions

Wetland Ecosystem Reference Conditions

© 2024 chempedia.info