Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity ratios acrylate monomers

The influence of radiation dose on the polymer composition and the swelling degree of (pAM-DAEA-HCl) are shown in Table 3. The results show that the percent of acrylamide in the copolymer is higher than that of the amine. This can be attributed to smaller reactivity ratios of monomers of diallylammonium salts relative to acryl-... [Pg.126]

Reactivity ratios express the relative tendency for monomer blocking versus monomer alternation along the polymer chain. A value of R greater than 1 indicates a tendency for monomer 1 to incorporate in blocks, while a value of R less than 1 indicates a tendency for monomer 1 to alternate with monomer 2 along the polymer chain. The kinetic behavior of monomer pairs can be classified into the categories described in Table 12.3. Typical reactivity ratios for monomers commonly used in acrylic fiber production are listed in Table 12.4 [71,72]. [Pg.829]

GopolymeriZation. The importance of VDC as a monomer results from its abiHty to copolymerize with other vinyl monomers. Its Rvalue equals 0.22 and its e value equals 0.36. It most easily copolymerizes with acrylates, but it also reacts, more slowly, with other monomers, eg, styrene, that form highly resonance-stabiHzed radicals. Reactivity ratios (r and r, with various monomers are Hsted in Table 2. Many other copolymers have been prepared from monomers for which the reactivity ratios are not known. The commercially important copolymers include those with vinyl chloride (VC),... [Pg.429]

Vinyhdene chloride copolymerizes randomly with methyl acrylate and nearly so with other acrylates. Very severe composition drift occurs, however, in copolymerizations with vinyl chloride or methacrylates. Several methods have been developed to produce homogeneous copolymers regardless of the reactivity ratio (43). These methods are appHcable mainly to emulsion and suspension processes where adequate stirring can be maintained. Copolymerization rates of VDC with small amounts of a second monomer are normally lower than its rate of homopolymerization. The kinetics of the copolymerization of VDC and VC have been studied (45—48). [Pg.430]

Various methylene derivatives of spiroorthocarbonates and spiroorthocstcrs have been reported to give double ring-opening polymerization e.g. Scheme 4.36). Like the parent monocyclic systems, these monomers can be sluggish to polymerize and reactivity ratios are such that they do not undergo ready copolymerization with acrylic and styrenic monomers. Copolymerizations with VAc have been reported.170 These monomers, like other acetals, show marked acid sensitivity. [Pg.206]

In this copolymerization, the reactivity ratios are such that there is a tendency for S and the acrylic monomers to alternate in the chain. This, in combination with the above-mentioned specificity in the initiation and termination steps, causes chains with an odd number of units to dominate over those with an even number of units. [Pg.384]

Monomers not amenable to direct homopolymerization using a particular reagent can sometimes be copolymcrizcd. For example, NMP often fails with methacrylates (e.g. MMA, BMA), yet copolymerizalions of these monomers with S are possible even when the monomer mix is predominantly composed of the methacrylate monomer,15j This is attributed to the facility of cross propagation and the relatively low steady state concentration of propagating radicals with a terminal MMA (Section 7.4.3.1). MMA can also be copolymerized with S or acrylates at low temperature (60 C).111 Under these conditions, only deactivation of propagating radicals with a terminal MMA unit is reversible, deactivation of chains with a terminal S or acrylate unit is irreversible. Molecular weights should then be controlled by the reactivity ratios and the comonomer concentration rather than by the nitroxide/alkoxyamine concentration. [Pg.527]

For the remaining three systems, styrene-vinyl acetate, vinyl acetate-vinyl chloride, and methyl acrylate-vinyl chloride, one reactivity ratio is greater than unity and the other is less than unity. They are therefore nonazeotropic. Furthermore, since both ri and 1/7 2 are either greater than or less than unity, both radicals prefer the same monomer. In other words, the same monomer—styrene, vinyl chloride, and methyl acrylate in the three systems, respectively—is more reactive than the other with respect to either radical. This preference is extreme in the styrene-vinyl acetate system where styrene is about fifty times as reactive as vinyl acetate toward the styrene radical the vinyl acetate radical prefers to add the styrene monomer by a factor of about one hundred as compared with addition of vinyl acetate. Hence polymerization of a mixture of similar amounts of styrene and vinyl acetate yields an initial product which is almost pure polystyrene. Only after most of the styrene has polymerized is a copolymer formed... [Pg.187]

Here r am is the reactivity ratio of an acrylamide radical with acrylamide and acrylic acid and Q is the ratio of acrylamide and acrylic acid in the monomer mixture from which the copolymer was derived. Thus, the determination of k. for at least three copolymers allows a derivation 1of k, k. and k . With this approach we found k- /k, = 0.11 and k2/k = 0.013. [Pg.319]

Table 5. Monomer reactivity ratios of alkyl acrylates and MMA... Table 5. Monomer reactivity ratios of alkyl acrylates and MMA...
Polymeric particles can be constructed from a number of different monomers or copolymer combinations. Some of the more common ones include polystyrene (traditional latex particles), poly(styrene/divinylbenzene) copolymers, poly(styrene/acrylate) copolymers, polymethylmethacrylate (PMMA), poly(hydroxyethyl methacrylate) (pHEMA), poly(vinyltoluene), poly(styrene/butadiene) copolymers, and poly(styrene/vinyltoluene) copolymers. In addition, by mixing into the polymerization reaction combinations of functional monomers, one can create reactive or functional groups on the particle surface for subsequent coupling to affinity ligands. One example of this is a poly(styrene/acrylate) copolymer particle, which creates carboxylate groups within the polymer structure, the number of which is dependent on the ratio of monomers used in the polymerization process. [Pg.583]

Compositionally uniform copolymers of tributyltin methacrylate (TBTM) and methyl methacrylate (MMA) are produced in a free running batch process by virtue of the monomer reactivity ratios for this combination of monomers (r (TBTM) = 0.96, r (MMA) = 1.0 at 80°C). Compositional ly homogeneous terpolymers were synthesised by keeping constant the instantaneous ratio of the three monomers in the reactor through the addition of the more reactive monomer (or monomers) at an appropriate rate. This procedure has been used by Guyot et al 6 in the preparation of butadiene-acrylonitrile emulsion copolymers and by Johnson et al (7) in the solution copolymerisation of styrene with methyl acrylate. [Pg.329]

Ferrocenylmethyl acrylate (FMA) and 2-ferrocenylethyl acrylate (FEA) have been synthesized and copolymerized with styrene, methyl acrylate, and vinyl acetate [C. U. Pittman, Jr., Macrmolecules, 4, 298 (1971)]. The following monomer reactivity ratios were found ... [Pg.541]

Reactivity ratios between acrylated lignin model compound (Fig. 2), defined as Mi, with either MM A or S, defined as M2, were determined experimentally in accordance with standard procedures (15). These involve mixing two different vinyl monomers in various molar ratios with catalyst (i.e., benzoyl peroxide) and solvent, heating the mixture to achieve polymerization, and recovering the polymer by the addition of non-solvent, and centrifugation. The respective molar monomer fractions of the copolymer were determined by UV-spectroscopy in the cases where MMA served as M2, and by methoxyl content analysis in those cases in which S was the M2-species. The results were subjected to numerical treatments according to the established relationships of Kelen-Tiidos (17) and Yezrielev-Brokhina-Roskin (YBR) (18), and this is described elsewhere (15). [Pg.520]

In order to overcome the reactivity ratio problem of AA, the use of acrylic monomers, such as -butyl acrylate, 2-ethylhexyl acrylate, ethyl acrylate, N-methylol acrylamide, and acrylamide have been suggested (14,15). Also, the use of water insoluble comonomers based on acrylamide has been described (16). [Pg.194]

The co-monomers such as vinyl acetate, acrylate esters, or carbon monoxide are fed together with ethylene, or introduced by liquid pumps, into the suction of the secondary compressor. The concentration in the feed of the co-monomer which is required to achieve a certain level of the co-monomer in the resulting polymer depends on the reactivity ratios, ri and r2, which are the ratios of rate constants of chain-propagation reactions [5]. The values for the co-monomers used in the high-pressure process are presented in Table 5.1-3. In the case of vinyl acetate, both reactivity ratios are identical and therefore the composition of the copolymer is the same as that of the feed. The concentration of vinyl acetate, for example, in... [Pg.245]

Copolymers. Vinyl acetate copolymenzes easily with a few monomers, e g, ethylene, vinyl chloride, and vinyl neodecanoate, which have reactivity ratios close to its own. Block copolymers of vinyl acetate with methyl methacrylate, acrylic acid, acrylonitrile, and vinyl pyrrolidinone have been prepared by copolymerization in viscous conditions, with solvents that are poor solvents for the vinyl acetate macroradical,... [Pg.1678]

Labelled monomers have been used in co-polymerizations for analysis of the resulting co-polymers and consequent determination of monomer reactivity ratios (15, 16). This technique is of particular value when the compositions of the different monomer units are rather similar or when the co-polymer contains only very small amounts of one of the monomers. These points can be appreciated by considering calculations on co-polymers of methyl methacrylate and methyl acrylate summarized in Table 1. The analyses have been calculated ignoring contributions of end-groups it assumed that the acrylate ester is labelled with carbon-14 and that specific activities are expressed in units such as curies/g of carbon. [Pg.7]

Comparing the reactivity ratios of the DADMAC/AAM copolymerization with results of the copolymerization of other cationic monomers with AAM, significant differences can be identified. The differences between rx and r2 are much lower, and the cationic monomer even reacts preferentially during the copolymerization. As an example, for cationic methacrylic esters and methacrylamid derivatives, 1 nonideal copolymerization preferring the cationic component. For the cationic analogs of acrylic acid and acrylamide, 0.34azeotropic copolymerization, preferring the cationic monomer only at low content in the comonomer mixture. [Pg.146]

Vinyl acetate-butyl acrylate copolymers (0-100% butyl acrylate) were prepared by both batch and starved semi-continuous polymerization using sodium lauryl sulfate emulsifier, potassium persulfate initiator, and sodium bicarbonate buffer. This copolymer system was selected, not only because of its industrial importance, but also because of its copolymerization reactivity ratios, which predict a critical dependence of copolymer compositional distribution on the technique of polymerization. The butyl acrylate is so much more reactive than the vinyl acetate that batch polymerization of any monomer ratio would be expected to give a butyl acrylate-rich copolymer until the butyl acrylate is exhausted and polyvinyl acetate thereafter. [Pg.86]

The copolymerization of monomers where one of the monomers acts as the hydrophobe was reported by Reimers and Schork [26]. MMA was copolymerized with p-methylstyrene, vinyl hexanoate, or vinyl 2-ethylhexanoate. The resulting copolymer composition tended to follow the predictions of the reactivity ratios, i.e., the reaction progresses as a bulk reaction. In contrast, copolymer compositions obtained from the (macro)emulsion copolymerizations tended to be more influenced by the relative water solubility of the comonomer and mass transfer. Wu and Schork used monomer combinations with large differences in reactivity ratios and water solubility vinyl acetate/butyl acrylate,... [Pg.100]


See other pages where Reactivity ratios acrylate monomers is mentioned: [Pg.44]    [Pg.174]    [Pg.466]    [Pg.339]    [Pg.539]    [Pg.540]    [Pg.65]    [Pg.435]    [Pg.634]    [Pg.56]    [Pg.869]    [Pg.114]    [Pg.70]    [Pg.171]    [Pg.174]    [Pg.488]    [Pg.489]    [Pg.71]    [Pg.515]    [Pg.517]    [Pg.517]    [Pg.520]    [Pg.291]    [Pg.392]    [Pg.90]    [Pg.466]    [Pg.99]   
See also in sourсe #XX -- [ Pg.288 , Pg.289 ]




SEARCH



Acrylates reactivity ratios

Acrylic monomer

MONOMER RATIO

Monomer reactivity

Monomer reactivity ratios

Reactive acrylic

Reactive monomers

Reactivity ratios

© 2024 chempedia.info