Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Production recent developments

The thiazolium-catalyzed addition of an aldehyde-derived acyl anion with a Michael acceptor (Stetter reaction) is a well-known synthetic tool leading to the synthesis of highly funtionalized products. Recent developments in this area include the direct nucleophilic addition of acyl anions to nitroalkenes using silyl-protected thiazolium carbinols <06JA4932>. In the presence of a fluoride anion, carbinol 186 is not cleaved to an aldehyde... [Pg.258]

Abstract Phase transfer catalysts including onium salts or crown ethers transfer between heterogeneous different phases and catalytically mediate desired reactions. Chiral non-racemic phase transfer catalysts are useful for reactions producing new stereogenic centers, giving chiral non-racemic products. Recent developments in this rapid expanding area will be presented. [Pg.123]

Reyes, S.C., Sinfelt, J.H., and Feeley, J.S. Evolution of processes for synthesis gas production Recent developments in an old technology. Industrial Engineering Chemistry Research, 2003, 42, 1588. [Pg.154]

A range of antibacterial products recently developed, are announced and described. The first is a polyester gelcoat incorporating Microban antibacterial agent, called Maxguard AB the second is a masteibatch called Neutrabac, which is particularly suited to PP and PE compounds and the third is a new antimicrobial sheet based on an antimicrobial masteibatch, called Actifresh. NESTE POLYESTER VICTOR INTERNATIONAL PLASTICS LTD. ROYALITE PLASTICS LTD. [Pg.84]

A. K. Chandel, S. da Silva and O. Singh, Biofuel Production - Recent Developments and Prospects, ed. M. A. Dos Santos Bernardes, InTeeh,... [Pg.157]

Table 3 Some Promising Antibiotics and Pharmaceutically Active Natural Products Recently [developed or Under Development... [Pg.12]

Nobel-laureate Richard Feynman once said that the principles of physics do not preclude the possibility of maneuvering things atom by atom (260). Recent developments in the fields of physics, chemistry, and biology (briefly described in the previous sections) bear those words out. The invention and development of scanning probe microscopy has enabled the isolation and manipulation of individual atoms and molecules. Research in protein and nucleic acid stmcture have given rise to powerful tools in the estabUshment of rational synthetic protocols for the production of new medicinal dmgs, sensing elements, catalysts, and electronic materials. [Pg.211]

Laminated Strand Products. The most recent developments in the family of wood-based composites are a group of laminated strand products, made with strands oriented in the long direction of the product and marketed as stmctural composite lumber. One product is made with long, narrow strips of softwood veneer. The strips or strands are about 2.5 x 13 x 600 mm (0.1 x 0.5 x 24 in.), coated with a PRE adhesive, and pressed under heat and pressure into large blocks. After the resin is cured the blocks are resawn and planed into lumber dimension stock. [Pg.396]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

PVDF-based microporous filters are in use at wineries, dairies, and electrocoating plants, as well as in water purification, biochemistry, and medical devices. Recently developed nanoselective filtration using PVDF membranes is 10 times more effective than conventional ultrafiltration (UF) for removing vimses from protein products of human or animal cell fermentations (218). PVDF protein-sequencing membranes are suitable for electroblotting procedures in protein research, or for analyzing the phosphoamino content in proteins under acidic and basic conditions or in solvents (219). [Pg.389]

Although the black inks are predominantly based on mineral oil, colors are almost entirely formulated with a soya bean oil vehicle. The superior printabHity of colors and economics of blacks guide the selection of product types by the market. Recently developed low mb blacks offer smudge-resistant print. Their share of the market is growing rapidly. The low mb characteristics of these inks are produced through the use of low stmcture carbon black. The addition of resin further enhances the smudge resistance but imposes a premium price. [Pg.249]

Historically, SOG techniques have been used the most for IMD fabrication, but TEOS/o2one (TEOS/O ) processes are more recent developments that have been increasing in popularity based on excellent step coverage and void-free characteristics. TEOS/O doped with boron and phosphoms (BPTEOS/O ) has replaced BPSG in small-scale devices, and has been used successfully in 4- and 16-Mb DRAM production (16). [Pg.348]

Xanthates and dithiophosphates dominate sulfide flotation usage, though several other collectors including more recently developed ones are gaining acceptance rapidly (43). As of this writing, this is an active area of research. Many of the sulfide collectors were first used ia the mbber iadustry as vulcanizers (16). Fatty acids, amines, and sulfonates dominate the nonsulfide flotation usage. The fatty acids are by-products from natural plant or animal fat sources (see Fats and fatty oils). Similarly petroleum sulfonates are by-products of the wood (qv) pulp (qv) iadustry, and amines are generally fatty amines derived from fatty acids. [Pg.412]

Linear a-olefins were produced by wax cracking from about 1962 to about 1985, and were first commercially produced from ethylene in 1965. More recent developments have been the recovery of pentene and hexene from gasoline fractions (1994) and a revival of an older technology, the production of higher carbon-number olefins from fatty alcohols. [Pg.437]

Prior to 1975, reaction of mixed butenes with syn gas required high temperatures (160—180°C) and high pressures 20—40 MPa (3000—6000 psi), in the presence of a cobalt catalyst system, to produce / -valeraldehyde and 2-methylbutyraldehyde. Even after commercialization of the low pressure 0x0 process in 1975, a practical process was not available for amyl alcohols because of low hydroformylation rates of internal bonds of isomeric butenes (91,94). More recent developments in catalysts have made low pressure 0x0 process technology commercially viable for production of low cost / -valeraldehyde, 2-methylbutyraldehyde, and isovaleraldehyde, and the corresponding alcohols in pure form. The producers are Union Carbide Chemicals and Plastic Company Inc., BASF, Hoechst AG, and BP Chemicals. [Pg.374]

Industrial sterilization cycles tend to vary considerably, not only from manufacturer to manufacturer, but often from product type to product type, depending on the bioburden present on a given load. Chemical indicators have historically been used only to differentiate between sterilized and nonsterilized packages. More recent developments have resulted in the availability of chemical dosimeters of sufficient accuracy to permit their appHcation either as total monitors or as critical detectors of specific parameters. [Pg.407]

J. B. Hyne, Recent Developments in Sulfur Production from Hydrogen Sulfide Containing Gases, paper presented at 181st National Meeting, ACS, Adanta, Ga., Mat. 29-Apt. 3,1981. [Pg.155]

Alternatives to oxychlorination have also been proposed as part of a balanced VCM plant. In the past, many vinyl chloride manufacturers used a balanced ethylene—acetylene process for a brief period prior to the commercialization of oxychlorination technology. Addition of HCl to acetylene was used instead of ethylene oxychlorination to consume the HCl made in EDC pyrolysis. Since the 1950s, the relative costs of ethylene and acetylene have made this route economically unattractive. Another alternative is HCl oxidation to chlorine, which can subsequently be used in dkect chlorination (131). The SheU-Deacon (132), Kel-Chlor (133), and MT-Chlor (134) processes, as well as a process recently developed at the University of Southern California (135) are among the available commercial HCl oxidation technologies. Each has had very limited industrial appHcation, perhaps because the equiHbrium reaction is incomplete and the mixture of HCl, O2, CI2, and water presents very challenging separation, purification, and handling requkements. HCl oxidation does not compare favorably with oxychlorination because it also requkes twice the dkect chlorination capacity for a balanced vinyl chloride plant. Consequently, it is doubtful that it will ever displace oxychlorination in the production of vinyl chloride by the balanced ethylene process. [Pg.422]

Wa.terBa.la.nce Chemicals. Water balance chemicals include muriatic acid, sodium bisulfate, and soda ash for pH control, sodium bicarbonate for alkalinity adjustment, and calcium chloride for hardness adjustment. A recent development is use of buffering agents for pH control. One of these products, sodium tetraborate, hydrolyzes to boric acid and a small amount of orthoborate (50) which provides significantly less buffering than carbonate and cyanurate alkalinity in the recommended pool pH range of 7.2—7.8 even at 100 ppm. [Pg.301]

Recent Developments. A considerable amount of cellulose acetate is manufactured by the batch process, as described previously. In order to reduce production costs, efforts have been made to develop a continuous process that includes continuous activation, acetylation, hydrolysis, and precipitation. In this process, the reaction mixture, ie, cellulose, anhydride, catalyst, and solvent, pass continuously through a number of successive reaction zones, each of which is agitated (92,93). In a similar process, the reaction mass is passed through tubular zones in which the mixture is forced through screens of successively small openings to homogenize the mixture effectively (94). Other similar methods for continuous acetylation of cellulose have been described (95,96). [Pg.255]

There are three main technologies available for carrying out this process diaphragm cells, mercury cells, and membrane cells. Membrane cells are the most recent development, and are generally chosen for new production capacity. [Pg.75]

Scarcely a single issue of Chemical Abstracts is published without reference to medicinal compounds containing the pyrazine or quinoxaline ring in some form, and hence it is impractical to list all applications of pyrazines, quinoxalines and phenazines. Some of the more important applications and natural products, particularly the more recent developments, are mentioned in this Section. [Pg.191]

The recent development and comparative application of modern separation techniques with regard to determination of alkylphosphonic acids and lewisite derivatives have been demonstrated. This report highlights advantages and shortcomings of GC equipped with mass spectrometry detector and HPLC as well as CE with UV-Vis detector. The comparison was made from the sampling point of view and separation/detection ability. The derivatization procedure for GC of main degradation products of nerve agents to determine in water samples was applied. Direct determination of lewisite derivatives by HPLC-UV was shown. Also optimization of indirect determination of alkylphosphonic acids in CE-UV was developed. Finally, the new instrumental development and future trends will be discussed. [Pg.278]

A more recent development of interest with this material is that scratch-resistant coatings may be stoved on at temperatures not feasible with conventional bisphenol A polycarbonates to give products with a scratch resistance comparable to glass. [Pg.566]

A recently developed adsorbent version of ORNL s porous carbon fiber-carbon binder eomposite is named carbon fiber composite molecular sieve (CFCMS). The CFCMS monoliths were the product of a collaborative researeh program between ORNL and the University of Kentueky, Center for Applied Energy Researeh (UKCAER) [19-21]. The m.onoliths are manufactured in the manner deseribed in Section 2 from P200 isotropic pitch derived fibers. While development of these materials is in its early stages, a number of potential applieations can be identified. [Pg.183]


See other pages where Production recent developments is mentioned: [Pg.286]    [Pg.171]    [Pg.1695]    [Pg.74]    [Pg.71]    [Pg.286]    [Pg.171]    [Pg.1695]    [Pg.74]    [Pg.71]    [Pg.734]    [Pg.872]    [Pg.117]    [Pg.196]    [Pg.165]    [Pg.287]    [Pg.287]    [Pg.336]    [Pg.404]    [Pg.230]    [Pg.8]    [Pg.80]    [Pg.361]    [Pg.1542]    [Pg.78]    [Pg.127]    [Pg.278]    [Pg.328]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Product development

© 2024 chempedia.info