Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotropic pitch

Carbon fibers from isotropic pitch Isotropic pitch or a pitch-like material, such as molten polyvinyl chloride, is melt spun at high strain rates to align the molecules parallel to the fiber axis. The thermoplastic fiber is then rapidly cooled and carefully oxidized at a low temperature (<100 °C). The oxidation process is rather slow, so as to ensure stabilization of the fiber by cross-linking to make it infusible. However, upon carbonization, relaxation of the molecules takes place, producing fibers with no significant preferred orientation. This process is not industrially attractive due to the lengthy oxidation step, and because only low-quality carbon fibers with no graphitization are produced. These fibers are used as fillers in various plastics to form thermal insulation materials. [Pg.193]

Coal-Tar Pitch Coke. Coal-tar pitch is used to produce needle coke primarily in Japan. Processes for producing needle coke from pitch have also been developed in Germany (4). The key to producing needle coke from coal tar or coal-tar pitch is the removal of the high concentrations of infusible sohds, or material insoluble in quinoline (QI), which are present in the original tar. The QI inhibits the growth of mesophase and results in an isotropic, high CTE coke from coal-tar pitch. After removal of the QI, very anisotropic and low CTE cokes are obtained from coal-tar-based materials. [Pg.498]

Fibers produced from pitch precursors can be manufactured by heat treating isotropic pitch at 400 to 450°C in an inert environment to transform it into a hquid crystalline state. The pitch is then spun into fibers and allowed to thermoset at 300°C for short periods of time. The fibers are subsequendy carbonized and graphitized at temperatures similar to those used in the manufacture of PAN-based fibers. The isotropic pitch precursor has not proved attractive to industry. However, a process based on anisotropic mesophase pitch (30), in which commercial pitch is spun and polymerized to form the mesophase, which is then melt spun, stabilized in air at about 300°C, carbonized at 1300°C, and graphitized at 3000°C, produces ultrahigh modulus (UHM) carbon fibers. In this process tension is not requited in the stabilization and graphitization stages. [Pg.6]

Fig. 12. A, Schematic representation of parallel arrays of polynuclear aromatic hydrocarbon molecules in a mesophase sphere. B, a) isolated mesophasc spheres in an isotropic fluid pitch matrix b) coalescence of mesophase c) structure of semi-coke after phase inversion and solidification. Fig. 12. A, Schematic representation of parallel arrays of polynuclear aromatic hydrocarbon molecules in a mesophase sphere. B, a) isolated mesophasc spheres in an isotropic fluid pitch matrix b) coalescence of mesophase c) structure of semi-coke after phase inversion and solidification.
Singer [22] developed a process for converting 50% of low-cost Ashland 240 isotropic pitch to mesophase by heating the pitch to 400-410°C for approximately 40 hours. During this "heat-soak," mesophase tended to collect at the bottom of the vessel, due to its greater density. The production of highly-oriented, graphitizable... [Pg.125]

Nazem [31] has reported that mesophase pitch exhibits shear-thinning behavior at low shear rates and, essentially, Newtonian behavior at higher shear rates. Since isotropic pitch is Newtonian over a wide range of shear rates, one might postulate that the observed pseudoplasticity of mesophase is due to the alignment of liquid crystalline domains with increasing shear rate. Also, it has been reported that mesophase pitch can exhibit thixotropic behavior [32,33]. It is not clear, however, if this could be attributed to chemical changes within the pitch or, perhaps, to experimental factors. [Pg.129]

Low density, carbon fiber-carbon binder composites are fabricated from a variety of carbon fibers, including fibers derived from rayon, polyacrylonitrile (PAN), isotropic pitch, and mesophase pitch. The manufacture, structure, and properties of carbon fibers have been thoroughly reviewed elsewhere [3] and. therefore, are... [Pg.169]

A recently developed adsorbent version of ORNL s porous carbon fiber-carbon binder eomposite is named carbon fiber composite molecular sieve (CFCMS). The CFCMS monoliths were the product of a collaborative researeh program between ORNL and the University of Kentueky, Center for Applied Energy Researeh (UKCAER) [19-21]. The m.onoliths are manufactured in the manner deseribed in Section 2 from P200 isotropic pitch derived fibers. While development of these materials is in its early stages, a number of potential applieations can be identified. [Pg.183]

On the other hand, organic materials of relatively low molecular weight such as acetylene, benzene, ethylene and methane, can produce vapour-grown carbon materials by imperfect combustion or by exposing their vapour to a heated substrate in an electric furnace in the presence of a metal catalyst. The latter process generates VGCFs. Other precursors to VGCF include polyacrylonitrile (PAN), isotropic or mesophase pitch, rayon or nylon [8]. [Pg.145]

Analytical approaches to understanding the effect of molecular flexibility on orientational order have concentrated on both the isotropic-nematic and the nematic-smectic transition [61, 62] and mean field theory has shown that cholesteric pitch appears not to depend on the flexibility of the molecule [63]. [Pg.27]

The introduction of a second chiral atom in the system leads to a reduction in the mesogenic properties and only a monotropic chiral nematic transition is observed for compound 23. However, when this compound is cooled down from the isotropic liquid state at a cooling rate of 0.5 °Cmin , very unusual blue phases BP-III, BL-II and BP-I are observed in the range 103-88 °C. Blue phases usually require pitch values below 500 nm. Hence the pitch value of the cholesteric phase for 23 must be very short, suggesting that the packing of two chiral carbons forces a faster helical shift for successive molecules packed along the perpendicular to the director. [Pg.377]

Pitch-like solids and isotropic semi-cokes Anisotropic semi-cokes... [Pg.32]

For rayon fiber based composites (Sections 3 and 4) the fiber and powdered resins were mixed in a water slurry in approximately equal parts by mass. The isotropic pitch carbon fiber composites (Section 5) were manufactured with less binder, typically a 4 1 mass ratio of fiber to binder being utilized. The slurry was transferred to a molding tank and the water drawn through a porous screen under vacuum. In previous studies [2] it was established that a head of water must be maintained over the mold screen in order to prevent the formation of large voids, and thus to assure uniform properties. The fabrication process allows the manufacture of slab or tubular forms. In the latter case, the cylinders were molded over a perforated tubular mandrel covered with a fine mesh or screen. Moreover, it is possible to mold contoured plates, and tubes, to near net shape via this synthesis route. [Pg.193]


See other pages where Isotropic pitch is mentioned: [Pg.534]    [Pg.202]    [Pg.2]    [Pg.5]    [Pg.6]    [Pg.24]    [Pg.125]    [Pg.126]    [Pg.127]    [Pg.170]    [Pg.184]    [Pg.190]    [Pg.205]    [Pg.230]    [Pg.230]    [Pg.233]    [Pg.446]    [Pg.475]    [Pg.26]    [Pg.111]    [Pg.45]    [Pg.146]    [Pg.147]    [Pg.148]    [Pg.191]    [Pg.205]    [Pg.211]    [Pg.226]    [Pg.251]    [Pg.251]    [Pg.254]    [Pg.467]   
See also in sourсe #XX -- [ Pg.6 , Pg.9 ]




SEARCH



Pitch

Pitching

© 2024 chempedia.info