Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium detection

Fehling s solution A solution of copper sulphate, sodium potassium tartrate and NaOH used for estimating and detecting reducing sugars. [Pg.173]

Plenary 11. W Kiefer et al, e-mail address wolfgang.kiefer mail.imi-wue.de (TR CARS). Ultrafast impulsive preparation of ground state and excited state wavepackets by impulsive CARS with REMPI detection in potassium and iodine duners. [Pg.1218]

This localization phenomenon has also been shown to be important in a case of catalysis by premicellar aggregates. In such a case [ ] premicellar aggregates of cetylpyridinium chloride (CPC) were shown to enhance tire rate of tire Fe(III) catalysed oxidation of sulphanilic acid by potassium periodate in tire presence of 1,10-phenantliroline as activator. This chemistry provides a lowering of tire detection limit for Fe(III) by seven orders of magnitude. It must also be appreciated, however, tliat such premicellar aggregates of CPC actually constitute mixed micelles of CPC and 1,10-phenantliroline tliat are smaller tlian conventional CPC micelles. [Pg.2593]

Detection of Potassium in the presence of Sodium. Add a cold saturated aqueous solution of sodium picrate to a solution of potassium chloride. A rapid precipitation of the less soluble potassium picrate occurs, even from a i°o solution of potassium chloride. [Pg.174]

Oxidation, (i) Dissolve 5 g. of potassium dichromate in 20 ml. of dil. H2SO4 in a 100 ml. bolt-head flask. Cool and add 1 ml. of methanol. Fit the flask with a reflux water-condenser and warm gently a vigorous reaction soon occurs and the solution turns green. The characteristic pungent odour of formaldehyde is usually detected at this stage. Continue to heat for 3 minutes and then fit the flask with a knee-tube (Fig. 59, p. 100) and distil off a few ml. Test the distillate with blue litmus-paper to show that it is definitely acid. Then apply Test 3 p. 350) for formic acid. (The reflux-distillation apparatus (Fig. 38, p. 63) can conveniently be used for this test.)... [Pg.335]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

CAUTION. Ethers that have been stored for long periods, particularly in partly-filled bottles, frequently contain small quantities of highly explosive peroxides. The presence of peroxides may be detected either by the per-chromic acid test of qualitative inorganic analysis (addition of an acidified solution of potassium dichromate) or by the liberation of iodine from acidified potassium iodide solution (compare Section 11,47,7). The peroxides are nonvolatile and may accumulate in the flask during the distillation of the ether the residue is explosive and may detonate, when distilled, with sufficient violence to shatter the apparatus and cause serious personal injury. If peroxides are found, they must first be removed by treatment with acidified ferrous sulphate solution (Section 11,47,7) or with sodium sulphite solution or with stannous chloride solution (Section VI, 12). The common extraction solvents diethyl ether and di-tso-propyl ether are particularly prone to the formation of peroxides. [Pg.315]

Hydrolysis (or saponification) of n-butyl acetate. Boil 4-5 g. of n-butyl acetate (Section 111,95) with 50 ml. of 10 per cent, sodium hydroxide solution under reflux until the odour of the ester can no longer be detected (about 1 hour). Set the condenser for downward distiUation and coUect the first 10 ml. of distillate. Saturate it with potassium carbonate, aUow to stand for 5 minutes, and withdraw all the Uquid into a small pipette or dropper pipette. AUow the lower layer of carbonate solution to run slowly into a test-tube, and place the upper layer into a small test-tube or weighing bottle. Dry the alcohol with about one quarter of its buUr of anhydrous potassium carbonate. Remove the alcohol with a dropper pipette and divide it into two parts use one portion for the determination of the b.p. by the Siwoloboff method (Section 11,12) and convert the other portion into the 3 5-dinitrobenzoate (Section III, 27) and determine the m.p. [Pg.390]

In the United States the analytical methods approved by most states are ones developed under the auspices of the Association of Official Analytical Chemists (AOAC) (3). Penalties for analytical deviation from guaranteed analyses vary, even from state to state within the United States (4). The legally accepted analytical procedures, in general, detect the solubiUty of nitrogen and potassium in water and the solubiUty of phosphoms in a specified citrate solution. Some very slowly soluble nutrient sources, particularly of nitrogen, are included in some specialty fertilizers such as turf fertilizers. The slow solubihty extends the period of effectiveness and reduces leaching losses. In these cases, the proportion and nature of the specialty source must be detailed on the labeling. [Pg.214]

The pH must be kept at 7.0—7.2 for this method to be quantitative and to give a stable end poiut. This condition is easily met by addition of soHd sodium bicarbonate to neutralize the HI formed. With starch as iudicator and an appropriate standardized iodine solution, this method is appHcable to both concentrated and dilute (to ca 50 ppm) hydraziue solutious. The iodiue solutiou is best standardized usiug mouohydraziuium sulfate or sodium thiosulfate. Using an iodide-selective electrode, low levels down to the ppb range are detectable (see Electro analytical techniques) (141,142). Potassium iodate (143,144), bromate (145), and permanganate (146) have also been employed as oxidants. [Pg.287]

The fermentation-derived food-grade product is sold in 50, 80, and 88% concentrations the other grades are available in 50 and 88% concentrations. The food-grade product meets the Vood Chemicals Codex III and the pharmaceutical grade meets the FCC and the United States Pharmacopoeia XK specifications (7). Other lactic acid derivatives such as salts and esters are also available in weU-estabhshed product specifications. Standard analytical methods such as titration and Hquid chromatography can be used to determine lactic acid, and other gravimetric and specific tests are used to detect impurities for the product specifications. A standard titration method neutralizes the acid with sodium hydroxide and then back-titrates the acid. An older standard quantitative method for determination of lactic acid was based on oxidation by potassium permanganate to acetaldehyde, which is absorbed in sodium bisulfite and titrated iodometricaHy. [Pg.515]

A iridine traces in aqueous solution can be determined by reaction with 4-(p-nitroben25l)pyridine [1083-48-3] and potassium carbonate [584-08-7]. Quantitative determination is carried out by photometric measurement of the absorption of the blue dye formed (367,368). Alkylating reagents interfere in the determination. A iridine traces in the air can be detected discontinuously by absorption in Folin s reagent (l,2-naphthoquinone-4-sulfonate) [2066-93-5] (369,370) with subsequent chloroform extraction and hplc analysis of the red dye formed (371,372). The detection limit is ca 0.1 ppm. Nitrogen-specific thermal ionisation detectors can be used for continuous monitoring of the ambient air. [Pg.12]

O ne. Air pollution (qv) levels are commonly estimated by determining ozone through its chemiluminescent reaction with ethylene. A relatively simple photoelectric device is used for rapid routine measurements. The device is caHbrated with ozone from an ozone generator, which in turn is caHbrated by the reaction of ozone with potassium iodide (308). Detection limits are 6—9 ppb with commercially available instmmentation (309). [Pg.276]

Both technical- and reagent-grade phosphoms pentoxide is typically >99% P O q. Phosphoms pentoxide sublimes near 360°C at atmospheric pressure. Lower oxides, which may account for <0.3% (as P40 ) in technical-grade material, are present at <0.02% in reagent-grade phosphoms pentoxide. Lower oxides are detected by decolorization of a dilute potassium permanganate solution (Table 11). [Pg.372]

Analytical Techniques. Sorbic acid and potassium sorbate are assayed titrimetricaHy (51). The quantitative analysis of sorbic acid in food or beverages, which may require solvent extraction or steam distillation (52,53), employs various techniques. The two classical methods are both spectrophotometric (54—56). In the ultraviolet method, the prepared sample is acidified and the sorbic acid is measured at 250 260 nm. In the colorimetric method, the sorbic acid in the prepared sample is oxidized and then reacts with thiobarbituric acid the complex is measured at - 530 nm. Chromatographic techniques are also used for the analysis of sorbic acid. High pressure Hquid chromatography with ultraviolet detection is used to separate and quantify sorbic acid from other ultraviolet-absorbing species (57—59). Sorbic acid in food extracts is deterrnined by gas chromatography with flame ionization detection (60—62). [Pg.284]

Separated polyols are detected by a variety of reagents, including ammoniacal silver nitrate (175), concentrated sulfuric acid, potassium permanganate (163), lead tetraacetate, and potassium teUuratocuprate (176). A mixture of sodium metaperiodate and potassium permanganate can be used to detect as htde as 5—8 ).tg of mannitol or erythritol (177). [Pg.52]

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

In some systems, known as continuous-flow analy2ers, the reaction develops as the sample —reagent mixture flows through a conduit held at constant temperature. In such systems, the reaction cuvettes are replaced by optical reading stations called flow cells. In most analy2ers, whether of discrete- or continuous-flow type, deterrnination of electrolyte tests, eg, sodium and potassium levels, is done by a separate unit using the technique of ion-selective electrodes (ISE) rather than optical detection. [Pg.392]

The majoiity of the various analyte measurements made in automated clinical chemistry analyzers involve optical techniques such as absorbance, reflectance, luminescence, and turbidimetric and nephelometric detection means. Some of these ate illustrated in Figure 3. The measurement of electrolytes such as sodium and potassium have generally been accomphshed by flame photometry or ion-selective electrode sensors (qv). However, the development of chromogenic ionophores permits these measurements to be done by absorbance photometry also. [Pg.394]

Bromine and bromides can be detected quaUtatively by a number of methods. In higher concentrations bromine forms colored solutions in solvents such as carbon tetrachloride [56-23-5] and carbon disulfide [75-15-0]. Bromine reacts with yeUow disodium fluorescein [518-47-8] to form red disodium tetrabromofluorescein (eosin) [548-26-5] C2QH Br4Na20. As Httle as 0.3 p.g of bromide can be detected and chlorides do not interfere (56). Bromine reacts with platinum sulfate [7446-29-9] Pt(S0 2> solution to form red to brown crystals of potassium hexabromoplatinate [16920-93-7] K PtBr ( )-... [Pg.288]

Detection of Bromine Vapor. Bromine vapor in air can be monitored by using an oxidant monitor instmment that sounds an alarm when a certain level is reached. An oxidant monitor operates on an amperometric principle. The bromine oxidizes potassium iodide in solution, producing an electrical output by depolarizing one sensor electrode. Detector tubes, usefiil for determining the level of respiratory protection required, contain (9-toluidine that produces a yellow-orange stain when reacted with bromine. These tubes and sample pumps are available through safety supply companies (54). The usefiil concentration range is 0.2—30 ppm. [Pg.288]

Analytical Methods. Most of the analytical and testing methods used for ethyl ether are conventional laboratory methods. Ethyl ether that is to be used for anesthetic purposes or in processes that involve heating or distiHation must be peroxide-free, and should pass the USP standard test with potassium iodide. This test detects approximately 0.001% peroxide as hydrogen peroxide. [Pg.427]

In order to detect the presence of dinitrothiophene, a few crystals of the solid are dissolved in alcohol and treated with a drop of weak solution of alcoholic potassium hydroxide. A pink or deep red color will develop at once. An excess of potassium hydroxide will destroy the color. ... [Pg.78]

When acetone was not used for washing out the bomb, a fraction weighing 70-75 g. was obtained by the submitters. After drying over anhydrous potassium carbonate, they obtained, by fractional distillation, 3-6 g. of a-methyltetrah3 dro-furan, b.p. SO-81 , and 23-28 g. of K-amyl alcohol, b.p. 137-138°. The alcohol obtained was pure, and neither secondary amyl nor butyl alcohols could be detected. [Pg.85]

Bismuthiol I (2,5-dimercapto-l,3,4-thiadiazole) potassium salt [4628-94-8] M 226.4, m 275-276 (dec), pKes,(I) 4.1. Usually contaminated with disulfide. Purified by crystn from EtOH. Reagent for detection of Bi,Cu, Pb and Sb. [Pg.402]


See other pages where Potassium detection is mentioned: [Pg.206]    [Pg.5601]    [Pg.206]    [Pg.5601]    [Pg.379]    [Pg.926]    [Pg.41]    [Pg.577]    [Pg.92]    [Pg.404]    [Pg.113]    [Pg.332]    [Pg.11]    [Pg.5]    [Pg.244]    [Pg.410]    [Pg.127]    [Pg.288]    [Pg.132]    [Pg.212]    [Pg.90]    [Pg.20]    [Pg.254]    [Pg.71]    [Pg.301]    [Pg.160]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



© 2024 chempedia.info