Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum sulfate

INFRARED TECHNOLOGY AND RAMAN SPECTROSCOPY - INFRARED TECHNOLOGY] (Vol 14) Platinum sulfate [7446-29-9]... [Pg.772]

Bromine and bromides can be detected quaUtatively by a number of methods. In higher concentrations bromine forms colored solutions in solvents such as carbon tetrachloride [56-23-5] and carbon disulfide [75-15-0]. Bromine reacts with yeUow disodium fluorescein [518-47-8] to form red disodium tetrabromofluorescein (eosin) [548-26-5] C2QH Br4Na20. As Httle as 0.3 p.g of bromide can be detected and chlorides do not interfere (56). Bromine reacts with platinum sulfate [7446-29-9] Pt(S0 2> solution to form red to brown crystals of potassium hexabromoplatinate [16920-93-7] K PtBr ( )-... [Pg.288]

Carboplatin (96) is significantly less toxic in the clinic than cisplatin. Most particularly, it is much less nephrotoxic. Use of a bidentate ligand also ensures formation of a ds complex. Its synthesis begins with cis-diammine platinum diiodide (94) which is reacted with silver sulfate to give cis-diaquodiam mine platinum sulfate (95). This is reacted with the barium salt of 1,1-cyclo-butanedicarboxylic acid to yield carboplatin [23],... [Pg.16]

Fulminating platinum was first prepared by E. Davy, about 1825, by adding ammonia water to a solution of platinum sulfate, boiling the precipitate with a solution of potash, washing, and allowing to dry. It was exploded by heat, but not easily by percussion or friction. [Pg.402]

The electrolytic processes for commercial production of hydrogen peroxide are based on (/) the oxidation of sulfuric acid or sulfates to peroxydisulfuric acid [13445-49-3] (peroxydisulfates) with the formation of hydrogen and (2) the double hydrolysis of the peroxydisulfuric acid (peroxydisulfates) to Caro s acid and then hydrogen peroxide. To avoid electrolysis of water, smooth platinum electrodes are used because of the high oxygen overvoltage. The overall reaction is... [Pg.477]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

By-Product Recovery. The anode slime contains gold, silver, platinum, palladium, selenium, and teUurium. The sulfur, selenium, and teUurium in the slimes combine with copper and sUver to give precipitates (30). Some arsenic, antimony, and bismuth can also enter the slime, depending on the concentrations in the electrolyte. Other elements that may precipitate in the electrolytic ceUs are lead and tin, which form lead sulfate and Sn(0H)2S04. [Pg.203]

Pla.tinum, Platinum plating has found appHcation in the production of platinised titanium, niobium, or tantalum anodes which are used as insoluble anodes in many other plating solutions (see Metalanodes). Plating solutions were often based on platinum "P" salt, which is diamminedinitroplatiniim (IT). A dinitroplatinite sulfate—sulfuric acid bath has been used to plate direcdy onto titanium (129). This bath contains 5 g/L of the platinum salt, pH adjusted to 2.0 with sulfuric acid. The bath is operated at 40°C at 10—100 A/m. Other baths based on chloroplatinic acid have been used in both acid and alkaline formulations the acid bath uses 20 g/L of the platinum salt and 300 g/L hydrochloric acid at 65° C and 10—200 A/m. The alkaline bath uses 10 g/L of the platinum salt, 60 g/L of ammonium phosphate and ammonium hydroxide to give a pH of 2.5—9.0. The alkaline bath can be plated directly onto nickel-base alloys acid baths require a gold strike on most metals. [Pg.163]

The precious-metal platinum catalysts were primarily developed in the 1960s for operation at temperatures between about 200 and 300°C (1,38,44). However, because of sensitivity to poisons, these catalysts are unsuitable for many combustion apphcations. Variations in sulfur levels of as Httle as 0.4 ppm can shift the catalyst required temperature window completely out of a system s operating temperature range (44). Additionally, operation withHquid fuels is further compHcated by the potential for deposition of ammonium sulfate salts within the pores of the catalyst (44). These low temperature catalysts exhibit NO conversion that rises with increasing temperature, then rapidly drops off, as oxidation of ammonia to nitrogen oxides begins to dominate the reaction (see Fig. 7). [Pg.511]

As noted above, the roasting of most metal sulfides yields either the oxide or sulfate. However, a few metals can be obtained directly by oxidation of their sulfides, and these all have the characteristic property that their oxides are much less stable than SO2. Examples are Cu, Ag, Hg and the platinum metals. In addition, metallic Pb can be extracted by partial oxidation of galena to form a sulfate (the Scotch hearth or Newnham process, p. 370). The oversimplified reaction is ... [Pg.677]

Many workers (5,6,7,87) have compared various metals for the selective hydrogenation of lower acetylenes to olefins, and it was always found that palladium was by far the most selective. This conclusion concurs with the usual synthetic experience, but under special circumstances other metals, such as platinum, may prove more useful (35,63). The catalyst support may also have an influence (21,65). Carbon, calcium carbonate, and barium sulfate are frequently used supports. Examples of some differences are noted later,... [Pg.53]

Platinum phthalocyanine (PcPt) is prepared by the reaction of phthalonitrile286,288 or isoindolinediimine114,117,288 with platinum(ll) chloride in a solvent such as 2-(dimethyl-amino)ethanol under the catalytic influence of l,8-diazabicyclo[5.4.0Jundec-7-ene. Another possibility is the fusion of phthalonitrile and pialinum(II) chloride58,156,157 or dipotassium tet-rachloroplatinate(II) (K2PtCl4) in the presence of urea, ammonium molybdate(Vl) and sodium sulfate.289... [Pg.735]

A platinum-iron on silica gel catalyst was prepared by impregnating silica gel (BDH, for chromatographic adsorption) with an aqueous solution of chloroplatinic acid (analytical grade) and sodium hydroxide (analytical grade). The dry product was then impregnated by a ferrous sulfate solution (C.P. grade) and the water was removed in a rotating evaporator. The prepared catalyst contained 1% Pt, 0.7% Fe, and 2% NaOH (by... [Pg.27]


See other pages where Platinum sulfate is mentioned: [Pg.280]    [Pg.296]    [Pg.296]    [Pg.841]    [Pg.1001]    [Pg.1002]    [Pg.36]    [Pg.222]    [Pg.296]    [Pg.296]    [Pg.280]    [Pg.296]    [Pg.296]    [Pg.841]    [Pg.1001]    [Pg.1002]    [Pg.36]    [Pg.222]    [Pg.296]    [Pg.296]    [Pg.259]    [Pg.379]    [Pg.379]    [Pg.95]    [Pg.176]    [Pg.293]    [Pg.179]    [Pg.2]    [Pg.258]    [Pg.78]    [Pg.148]    [Pg.67]    [Pg.64]    [Pg.1179]    [Pg.22]    [Pg.138]    [Pg.284]    [Pg.110]    [Pg.155]   
See also in sourсe #XX -- [ Pg.402 ]

See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Platinum acidic sulfate solution

Platinum electrode, sulfate adsorption

© 2024 chempedia.info