Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl chloride properties

The paper discusses the application of dynamic indentation method and apparatus for the evaluation of viscoelastic properties of polymeric materials. The three-element model of viscoelastic material has been used to calculate the rigidity and the viscosity. Using a measurements of the indentation as a function of a current velocity change on impact with the material under test, the contact force and the displacement diagrams as a function of time are plotted. Experimental results of the testing of polyvinyl chloride cable coating by dynamic indentation method and data of the static tensile test are presented. [Pg.239]

Figure 12.20. Effect of change of plasticiser on the properties of polyvinyl chloride compounds. (a) Tensile strength, (b) Cold flex temperature, (c) BS softness number, (d) Elongation at break, (e) 100% modulus. (The Distillers Company Ltd.)... Figure 12.20. Effect of change of plasticiser on the properties of polyvinyl chloride compounds. (a) Tensile strength, (b) Cold flex temperature, (c) BS softness number, (d) Elongation at break, (e) 100% modulus. (The Distillers Company Ltd.)...
Plasticisers. Plasticisers are low molecular weight materials which alter the properties and forming characteristics of the plastic. An important example is the production of flexible grades of polyvinyl chloride by the use of plasticisers. [Pg.3]

Lactic acid and levulinic acid are two key intermediates prepared from carbohydrates [7]. Lipinsky [7] compared the properties of the lactide copolymers [130] obtained from lactic acid with those of polystyrene and polyvinyl chloride (see Scheme 4 and Table 5) and showed that the lactide polymer can effectively replace the synthetics if the cost of production of lactic acid is made viable. Poly(lactic acid) and poly(l-lactide) have been shown to be good candidates for biodegradeable biomaterials. Tsuji [131] and Kaspercejk [132] have recently reported studies concerning their microstructure and morphology. [Pg.419]

Two-piece food cans may be made by a draw-redraw process, in which lacquer is first applied to and cured on sheet. Blanks are then cut from the sheet and the can is drawn from the blank in two or three stages. The lacquer deforms with the drawing process and lubricates the draw. It then becomes the interior protective coating. Although epoxy-phenolic solvent-borne lacquers are used, even better drawing properties are obtained from organosols. These are dispersions of colloidal polyvinyl chloride powder in solutions of other mixed resins in solvent, e.g. chosen from epoxy, polyester, vinyl and phenolic. [Pg.633]

Polyvinyl chloride (p.v.c.) P.V.C. is one of the two most important plastics in terms of tonnage and shows many properties typical of rigid amorphous thermoplastics. More individually, it softens at about 70°C, burns only with difficulty and is thermally unstable. To reduce this instability, stabilisers are invariably compounded into the polymer. [Pg.932]

Specific family or group of plastics (polyethylene, polyvinyl chlorides, etc.) are compounded or alloyed to provide different properties and/or processing behaviors. Thus a plastic listed in Fig. 5-6 could have different heat resistance properties. [Pg.319]

Property ASTM Test Phenolics Foamedin Syntactic Place Castable Polyvinyl Chloride Rigid Closed Cell Phenylene Oxide Foamable Resin Polycarbonate Polystyrene Medium-Density Foam Polystyrene Molded Extruded Polyurethane Rigid Closed Cell... [Pg.497]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Compared with tar, which has a relatively short lifetime in the marine environment, the residence times of plastic, glass and non-corrodible metallic debris are indefinite. Most plastic articles are fabricated from polyethylene, polystyrene or polyvinyl chloride. With molecular weights ranging to over 500,000, the only chemical reactivity of these polymers is derived from any residual unsaturation and, therefore, they are essentially inert chemically and photochemically. Further, since indigenous microflora lack the enzyme systems necessary to degrade most of these polymers, articles manufactured from them are highly resistant or virtually immune to biodegradation. That is, the properties that render plastics so durable... [Pg.235]

The properties of a polymer depend not only on its gross chemical composition but also on its molecular weight distribution, copolymer composition distribution, branch length distribution, and so on. The same monomer(s) can be converted to widely differing polymers depending on the polymerization mechanism and reactor type. This is an example of product by process, and no single product is best for all applications. Thus, there are several commercial varieties each of polyethylene, polystyrene, and polyvinyl chloride that are made by distinctly different processes. [Pg.492]

The ductility of GRT-polyethylene blends drastically decreases at ground rubber concentration in excess of 5%. The inclusion of hnely ground nitrile rubber from waste printing rollers into polyvinyl chloride (PVC) caused an increase in the impact properties of the thermoplastic matrix [76]. Addition of rubber powder that is physically modihed by ultrasonic treatment leads to PP-waste ethylene-propylene-diene monomer (EPDM) powder blends with improved morphology and mechanical properties [77]. [Pg.1050]

Liquid membranes consist of an organic phase, which by its hydrophobic nature is relatively impermeable to ions. Originally organic solvents such as decanol were used in conjunction with a porous hydrophobic membrane. These have been replaced by plasticized polyvinyl chloride membranes which behave like liquids yet have improved mechanical properties Other polymers such as silicone, polyurethane and ururshi, a... [Pg.58]

Polyvinyl chloride has been modified by photochemical reactions in order to either produce a conductive polymer or to improve its light-stability. In the first case, the PVC plate was extensively photochlorinated and then degraded by UV exposure in N2. Total dehydrochlorination was achieved by a short Ar+ laser irradiation at 488 nm that leads to a purely carbon polymer which was shown to exhibit an electrical conductivity. In the second case, an epoxy-acrylate resin was coated onto a transparent PVC sheet and crosslinked by UV irradiation in the presence of both a photoinitiator and a UV absorber. This superficial treatment was found to greatly improve the photostability of PVC as well as its surface properties. [Pg.201]

In the production of polyvinyl chloride by the emulsion process, the percentages of catalyst, wetting agent, initiator, and solvent all affect the properties of the resultant polymer. They must be carefully metered into the reaction vessel. The vinyl chloride used must also be very pure. Either the scope must specify that the purchased raw material shall meet certain specifications, or some purification equipment must be installed so that the required quality can be obtained. [Pg.160]

Gravimetric hoppers feed a mold with a prescribed weight of polymer. The feed stock is either a finely divided powder or a liquid plastisol. A plastisol is a suspension of a resin powder, typically polyvinyl chloride, in a plasticizer, used to manufacture. Rotational molders use liquids and powders in their process since both flow freely. This property permits the easy addition of the materials to the mold. More importantly, they flow smoothly around the interior of the mold as it rotates. In doing so, they coat the entire surface. [Pg.261]

The vinyl chloride monomer polymerizes via addition polymerization to form polyvinyl chloride. The final polymer has the chemical composition shown in Fig. 22.1. The polymer exhibits limited crystallinity, though this property is not often considered as important in defining its performance. It tends to be atactic or regionally syndiotactic, surrounded by extended atactic runs. When exposed to temperatures above 100 °C, polyvinyl chloride decomposes, creating free radicals that further attack the polymer chain, as we shall discuss in more detail later. For this reason, the degradation of polyvinyl chloride is autocatalytic... [Pg.343]

Simply by changing the components added to polyvinyl chloride, we can create a wide range of properties. The receptiveness of the resin to different additives, the many processing methods available to producing polyvinyl chloride-based products, and its low cost combine to make it one of the most versatile polymers in commercial use today. [Pg.355]

Traditionally, ultrafilters have been manufactured from cellulose acetate or cellulose nitrate. Several other materials, such as polyvinyl chloride and polycarbonate, are now also used in membrane manufacture. Such plastic-type membranes exhibit enhanced chemical and physical stability when compared with cellulose-based ultrafiltration membranes. An important prerequisite in manufacturing ultrafilters is that the material utilized exhibits low protein adsorptive properties. [Pg.137]

A vast number of polymer compounds are available commercially. Generally they are known by their polymer type in full or abbreviated (e.g., acrylic, polyvinyl chloride or PVC, high density polyethylene or HDPE), and frequently by a manufacturer s trade name. There is little standardisation into classes based on chemical composition or physical performance, as there is for metals. In reality, a particular chemical composition does not fully define the physical properties, while each class of performance properties can be met by a range of competing polymer types. The current trend is towards further diversification polymer compounds are increasingly being tailored to a particular application. Only in industries where recycling is an issue is there pressure for a more limited number of polymers, which can be identified and separated at the end of product life. [Pg.19]

The intrinsic properties come from those of the polyvinyl chloride with ... [Pg.320]

ISO 580 1990 Injection-moulded unplasticized poly(vinyl chloride) (PVC-U) fittings -Oven test - Test method and basic specifications ISO 727-1 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 1 Metric series ISO 727-2 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 2 Inch-based series ISO 1163-1 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 1163-2 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 1265 1979 Plastics - Polyvinyl chloride resins - Determination of number of impurities and foreign particles... [Pg.322]

ISO 2898-1 1996 Plastics - Plasticized poly(vinyl chloride) (PVC-P) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 2898-2 1997 Plastics - Plasticized poly(vinyl chloride) (PVC-P) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 3114 1977 Unplasticized polyvinyl chloride (PVC) pipes for potable water supply -Extractability of lead and tin - Test method... [Pg.323]

Slip additives act at the surface of a polymer film or article to reduce the friction between it and another surface. In a variety of plastics, such as polyolefins, polystyrene, and polyvinyl chloride, fatty-acid amides are applied as slip additives. Fatty-acid amides, such as oleamide, stearamide, erucamide, and oleyl palmitamide, are added to plastic formulations where they gradually tend to bloom to the surface, imparting useful properties including lubrication, prevention of films sticking together, and reduction of static charge. [Pg.327]

Olefins or alkenes are defined as unsaturated aliphatic hydrocarbons. Ethylene and propylene are the main monomers for polyolefin foams, but dienes such as polyisoprene should also be included. The copolymers of ethylene and propylene (PP) will be included, but not polyvinyl chloride (PVC), which is usually treated as a separate polymer class. The majority of these foams have densities <100 kg m, and their microstructure consists of closed, polygonal cells with thin faces (Figure la). The review will not consider structural foam injection mouldings of PP, which have solid skins and cores of density in the range 400 to 700 kg m, and have distinct production methods and properties (456). The microstructure of these foams consists of isolated gas bubbles, often elongated by the flow of thermoplastic. However, elastomeric and microcellular foams of relative density in the range 0.3 to 0.5, which also have isolated spherical bubbles (Figure lb), will be included. The relative density of a foam is defined as the foam density divided by the polymer density. It is the inverse of the expansion ratio . [Pg.3]


See other pages where Polyvinyl chloride properties is mentioned: [Pg.243]    [Pg.138]    [Pg.238]    [Pg.15]    [Pg.285]    [Pg.334]    [Pg.429]    [Pg.47]    [Pg.353]    [Pg.444]    [Pg.21]    [Pg.207]    [Pg.210]    [Pg.343]    [Pg.350]    [Pg.351]    [Pg.351]    [Pg.322]    [Pg.90]    [Pg.49]    [Pg.302]    [Pg.322]    [Pg.312]   
See also in sourсe #XX -- [ Pg.151 , Pg.152 ]

See also in sourсe #XX -- [ Pg.4 , Pg.16 ]

See also in sourсe #XX -- [ Pg.151 , Pg.152 ]

See also in sourсe #XX -- [ Pg.4 , Pg.16 ]

See also in sourсe #XX -- [ Pg.8 , Pg.13 , Pg.25 , Pg.27 ]




SEARCH



Chlorides properties

Polyvinyl chloride

Polyvinyl chloride , film properties

Polyvinyl chloride electrical properties

© 2024 chempedia.info